How to develop the algorithm for physical processes in atmospheric models

Song-You Hong (Yonsei University, Seoul, Korea)

Presentation (NWP perspective)

- Introduction to the physics parameterizations
 - Development strategy : Stable PBL processes
 - Deterministic versus stochastic approach
 - Strategy for development (personal)

Numerical model

Introduction to Physical processes in atmosphere

Introduction to Physical processes in atmosphere

* Physical process in the atmosphere

Specification of heating, moistening and frictional terms in terms of dependent variables of prediction model

 \rightarrow Each process is a specialized branch of atmospheric sciences.

Introduction to Physical processes in atmosphere

* Subgrid scale process (physics modeling)

Any numerical model of the atmosphere must use a finite resolution in representing continuum certain physical & dynamical phenomena that are smaller than computational grid.

- Subgrid process (Energy perspective)

- $\Delta x \rightarrow 0$, the energy dissipation takes place by molecular viscosity (smallest grid size \Box idealized situation)
- Objective of subgrid scale parameterization

"To design the physical formulation of energy sink, withdrawing the equivalent amount of energy comparable to cascading energy down at the grid scale in an ideal situation."

Introduction to Physical processes in the atmosphere

Model

Nature

* Parameterization that are only somewhat smaller than the smallest resolved scales.

Where truncation limit ; spectral gap

Unfortunately, there is no spectral gap

Development of physics algorithms

• Theoretical development (concept) : Step 1

- Systematic deficiency
- LES study/ theory
- Numerical discretization
- Idealized experiments

• Balance with nature (module) : Step 2

- Real case experiments
- Process study
- Refinement/reformulation

Evaluation at real-time testbed (package) : Step 3

- Short-range forecast
- Medium-range forecast
- Long-range forecast

YSUPBL - development

Stable boundary layer mixing in a vertical diffusion package

Step 1 : Systematic deficiency

• <u>YSU underestimates the chemical species in</u> <u>stable conditions (over water)</u>

Step 1 : Systematic deficiency

Dear Dr. Hong,

This is Fred. I started to use the fully coupled chemistry within the WRF (WRF/Chem) since I came to Los Alamos to examine the

transport and transformation of gaseous and particulate pollutions emitted by megacities such as Mexico City on local and regional scales. One thing I have noticed is that the nocturnal PBL heights in WRF using YSU scheme are nearly constant between 0 and 20 meters. Lidar data from the recent Mexico City field campaign reveal nocturnal PBL heights actually vary between 20 and 500 meters with strong winds corresponding to large PBL heights. I just attended a workshop in Boulder related with the Mexico City field campaign in which many people expressed their concerns for the nearly constant PBL heights in WRF since realistic PBL heights are important for capturing the transport of chemical species.

Step 1 : Systematic deficiency

Cold bias appears near surface in the other seasons

Seasonal bias of RH in DM1 (from FNL)

Spring (MAM)

Wet bias appears near surface in all seasons

WRF real-time operation at JHWC-GPP Cold and wet biases

Step 1 : Form a new concept

Vickers and Mahrt (2004, BLM, 1736-1749)

$$Rib = h\left(\frac{g}{\overline{\theta}}\right) \frac{\left[\theta(h) - \theta_{s}\right]}{U(h)^{2}}$$

the surface bulk Richardson number where the critical value for Rib is defined by

$$Rib_{cr} = 0.16 \left(10^{-7} R_o\right)^{-0.18}$$

, where

$$R_o = U_{10} / (fz_0)$$

with f=10**-4.

Step 1 : Design a new algorithm

$$Ri = \frac{g(\theta_v(h) - \theta_s)}{\theta_{va} |U(h)|^2} z$$

Over water
$$Rib_{cr} = 0.16(10^{-7} R_o)^{-0.18}$$

Over land $Rib_{cr} = 0.25$

Step 1 : Idealized case One-d test : dz = 25 m, sunset = 18 h

Step 2: Real case – Validation with IOP

Step 2: Real case-3D

CNTL : Ribcr = 0 (local Ri dependent mixing), WRF 2.2 STBL : Ribcr > 0 (parabolic shape diffusivity), WRF 3.0

Offline test : idealized surface flux forcing WRF : Cloud resolving resolution (4km) RSM : Regional climate simulation (50km) GSM : Seasonal simulation (T62 ~ 200 km)

Step 2 : Real case ---- RSM 50 km (18hr fcst)

CNTL : PBL height of a constant value during night

STBL : PBL height increases when winds are strong

STBL

HPBL

10m U

Step 2: Interaction with precipitation – regional RCM simulation in July 2006: RSM 50 km OBS CNTL (PC = 0.47) STBL(PC = 0.57)

CNTL (PC = 0.47)

Nighttime rainfall is enhanced Oceanic rainfall is enhanced

Hong (2010 QJRMS)

Step 2: Interaction with other physics

Seasonal simulation (T62; about 200 km)

Model : GRIMs-v2 (Global/Regional Integrated Model system) Period : 1996. 5 – 8 (JJA), 1996.11-1997. 2 (DJF) Ensemble : 5 members Experiments: CNTL : Hong et al. 2006 STBL : Hong 2010 (enhanced mixing)

Step 2: Interaction with other physics Seasonal simulation for JJA 1996 (rainfall)

ysu	stable	stable_150	
Global mean	Global mean	Global mean	
OBS = 2.70795 MODEL = 3.28068	OBS = 2.70795 MODEL = 3.30121	OBS = 2.70795 MODEL = 3.31642	
Pattern correlation	Pattern correlation	Pattern correlation	
$\begin{array}{rcl} \text{GL} & = & 0.736781 \\ \text{EA} & = & 0.625432 \end{array}$	GL = 0.739652 EA = 0.60589	GL = 0.738123 EA = 0.678413	

Scheme is stable !!! Skill is comparable

stable - cntl

Step 2: Interaction with other physics

Zonal mean temperature

Contour : STBL-CNTL

JJA 1996

DJF 96/97 10 30 50 -

Error is reduced by 10 % due to stable BL

Stable boundary mixing should be confined in the lower troposphere, then, how it influences the stratosphere ???

---- Interaction issue

Step 2: Harmony

Zonal-averaged zonal wind (96/97

Latitude

Contour : Zonal averaged zonal wind Shaded: Deviations from the RA2

Kim and Arakawa →Improves upper level jets →Improves the sea level pressure

(Kim and Hong, GR-letter, June 2009)

Enhanced lower tropospheric gravity wave drag (Kim and Arakawa 1995, J. Atmos. Sci.)

Stress at reference level $\tau_0 = -E \frac{1}{\Delta x} \frac{\rho_0 U_0^3}{N_0} \frac{Fr^2}{Fr^2 + 0.5/OC}, \ U_0 = \frac{1}{h} \int_{k=1}^{k=kpbl} U dz$ Reference level (KA95) : Max (2, KPBL)

OLD SBL : Too shallow PBL height → too small Tau_0 → too small drag in the upper troposphere → too strong westerly bias

Step 3: Short-range forecast : SLP trend

Erro	rТ	ab	le
	• •	$\sim \sim$	

	Time	48-h forecast		72-h forecast	
		RMSE	PC	RMSE	РС
	NOGWD	2.34	0.89	4.33	0.88
AL ←	– UPGWD	2.23	0.91	4.79	0.85
	LOGWD	2.12	0.91	4.28	0.84
	LOGWD_KD	2.29	0.93	3.04	0.92
KA 🔶	- LOGWD_MX	2.19	0.93	2.95	0.92

Step 3: A statistical evaluation – July 2006

Step 3: Medium-range forecast : December 2006 (10 day run every 00, 12 UTC)

Hong et al. 2008 (Wea Forecasting) KA 1995 GWDO scheme was correctly devised, but it took another 12 yrs to make it work

*Initial implementation : 1995 *Final (?) implementation : 2007

YSU PBL finished ???

An apparent systematic bias : Too strong surface wind in nighttime

AFWA: WRF 6Z Run, 24 Hour Fcst (mid night) Wind Speed >= 10kts

Some issues in PBL (NWP perspective)

Current status

- PBL structure in daytime is relatively well simulated
- PBL mixing in nighttime stable regime is generally weak
- Temperature is good, moisture is not bad, but winds bad
- PBL in precipitating convection is poorly understood

Further development

- Hybrid approach combining the non-local and TKE (HD PBL)
- Understanding the moist PBL turbulence
- Interaction with other physical processes
- Super-parameterization (nesting LES model in vertical)

The same strategy has been applied to other physics algorithms. For example,

Current issues in model physics

Lee and Hong (2005, BAMS)

PHYSICAL PARAMETERIZATION IN NEXT-GENERATION NWP MODELS

BY TAE-YOUNG LEE AND SONG-YOU HONG

he Second International Workshop on Next-Generation Numerical Weather Prediction (NWP) Models¹ met to discuss the impact of recent developments in modeling for next-generation, high-resolution NWP models, and to exchange ideas for improving the prediction of high-impact weather. In 1999, the Laboratory for Atmospheric Modeling Research (LAMOR) of Yonsei University (YSU) embarked on a national project developing a next-generation NWP model focusing on the parameterization of physical processes in high-resolution models (see information online at http://lamor.yonsei.ac.kr). The ultimate goal of the project is in line with that of the Weather Research and Forecast (WRF) model initiative (see information online at http://wrf-model.

THE SECOND INTERNATIONAL WORKSHOP ON NEXT-GENERATION NWP MODELS

- WHAT: Scientists from Korea, Japan, and the United States discuss recent developments in the parameterizations of physical processes in nextgeneration, high-resolution numerical weather prediction models
 WHAT: 12, 10 May 2004
- WHEN: 17–18 May 2004
- WHERE: Yonsei University, Seoul, Korea

The director of LAMOR, Professor Tae-Young Lee, told participants that the focus of this workshop was **PROBLEMATIC ISSUES.** Problems with physics parameterizations in the models that emerged during the workshop include the following: resolution dependency of each physical process, deterministic versus stochastic approaches, and use of observations.

Resolution dependency of physics. Physical parameterization schemes developed at one scale may no longer be valid at smaller scales, because computer power increases and grid sizes decrease. Cumulus schemes are a current example, and PBL schemes may be

Deterministic versus ensemble versus stochastic approaches. Deterministic approaches to modeling imply refinement of parameterizations, addition of complexity, and superparameterization, whereas an ensemble approach can be based on uncertainties in initial conditions or physics schemes. Meanwhile, stochastic approach incorporates randomness, such as Grell's ensemble cumulus approach, the PDF approach, or random number uses. For a given

Use of observations. The increase of various observations may not guarantee the improvement of model forecasts. Many observation datasets are not useful from a point of view of modeling, and/or are not obtained with the purpose of improving model per-

Dynamics versus Physics

Dynamics is accurate but physics is muddy ?

Deterministic approach is saturated ?

Accurate refinement in model is being saturated ?

Forward semi-Lagrangian mass conservation positive definite advection scheme for sedimentation of precipitation

Hann-Ming Henry Juang and Song-You Hong

(Mon Wea Rev, 2010 May issue)

WSM3 implementation : 1D case

Dynamics versus Physics

It is interesting to note that the ill-posed sedimentation in NWP models has been placed for more than 20 yrs

Much efforts has been given to microphysics itself

Hopefully this is the final, but they may be another or many

Resolution dependency

Cut-off horizontal grid length for parameterizations

- Cumulus parameterization : ~ 3 km (Shin and Hong 2009)
- PBL : ~50 m (Mirocha, 2008 WRF workshop)
- GWDO : ~ 3 km (hydrostatic approximation)
- GWDC: ~ 3 km (go with CP)
- However, recall the past 20 years

Resolution dependency

Cut-off horizontal grid length for Cumulus parameterization :

- KMA regional prediction model has been operational without CP even at 80 km until late 1990
- With advances in CP and other physics and initial condition, the cut-off length becomes smaller and smaller
- CP is beneficial even at 4 km (JMA operational model)

Subgrid-scale parameterization for physics may be necessary even at 1 km or smaller since the finite model grid cannot resolve all the nature explicitly

Progress and Prospects

1. Deterministic approach

a) Convectional method :

- Simplified Arakawa-Schubert [SAS] (Numagtuti et al. 1995)
- Kuo scheme (Kuo 1974)
- Relaxed Arakawa-Schubert [RAS] (Moorthi and Suarez, 1992)
- b) Superensemble method (Krishnamurti and Sanjay 2003)
- weighted average of products from 6 different convective schemes

2. Stoachstic approach

- Houtekamer et al. (1996)
- : to mimic the parameterization error by using different parameterizations within ensemble prediction system
- Buizza et al. (1999)
- : to impose a stochastic term to the physical parameterization (European Centre for Medium-Range Weather Forecasts Ensemble Prediction System)
- Grell and Devenyi (2002) : designed by a random multiplier
- Lee et al. (2008) : unified multicumulus convective ensemble

3. Intergrated approach

• Byun and Hong (2007) : Cumulus convection organized by synoptic scale moisture convergence (dynamics→ physics)

Progress and Prospects

Unknown versus Uncertain

One should apply the stochastic method to uncertain process One should find a deterministic solution for unknown process

Development strategy

Physically based Simplicity Harmony

Final remarks

Evaluation is everything ~~~

but critical to yourself !!!

[Code Description]

Weather Research and Forecasting (WRF) Double-Moment 6-class (WDM6) Microphysics scheme

Numerical Modeling Laboratory, Yonsei University (YSU)

WRF Model Structure

SUBROUTINE wdm6init

1	no	dule	mn	wd	
40			<u></u>		
MU	DULE M	odule_mp_wa	мь		
÷.		mf			
÷.			┚●⊥ `		
·	PEOL	POPOMETER	PRIVOTE ++	dtoldon = 120	maximum time step for minor loops
	REAL,	POPOMETER	PRIVATE ++	acciaci = 2.20	intercent peremeter rain
	REAL,	POROMETER	PRIVATE ++	n00 = 4 = 6	intercept parameter oraupel
	REAL	PARAMETER	PRIVATE **	autr = 841.9	a constant for terminal velocity of rain
	REAL	PARAMETER	PRIVATE **	botr = 0.8	a constant for terminal velocity of rain
	REAL	PARAMETER	PRIVATE ::	r0 = .8e-5	8 microm in contrast to 10 micro m
	REAL.	PARAMETER.	PRIVATE ::	peaut = .55	collection efficiency
	REAL	PARAMETER.	PRIVATE ::	xncr = 3.e8	maritime cloud in contrast to 3.e8 in tc80
	REAL,	PARAMETER,	PRIVATE ::	xmyu = 1.718e-5	the dynamic viscosity kgm-1s-1
	REAL,	PARAMETER,	PRIVATE ::	avts = 11.72	a constant for terminal velocity of snow
	REAL,	PARAMETER,	PRIVATE ::	bvts = .41	a constant for terminal velocity of snow
	REAL,	PARAMETER,	PRIVATE ::	avtg = 330.	a constant for terminal velocity of graupel
	REAL,	PARAMETER,	PRIVATE ::	bvtg = 0.8	a constant for terminal velocity of graupel
	REAL,	PARAMETER,	PRIVATE ::	deng = 500.	density of graupel
	REAL,	PARAMETER,	PRIVATE ::	nOsmax = 1.e11	maximum nOs (t=-90C unlimited)
	REAL,	PARAMETER,	PRIVATE ::	lamdacmax = 1.e10	limited maximum value for slope parameter of cloud water
	REAL,	PARAMETER,	PRIVATE ::	lamdarmax = 1.e8	limited maximum value for slope parameter of rain
	REAL,	PARAMETER,	PRIVATE ::	lamdasmax = 1.e5	limited maximum value for slope parameter of snow
	REHL,	PHRHMETER,	PRIVHIE ::	lamdagmax = 6,e4	limited maximum value for slope parameter of graupel
	REHL,	PHRHMETER,	PRIVHIE II	dicon = 11.9	l constant for the cloud-ice diamter
	DEAL	DODOMETED	DDIUATE ++	0100 = 2.5	tempenature dependent intercept parameter area
	REAL,	POROMETER,	PRIVATE ++	nos - 2,00 aloba - 12	l 122 exponen factor for nús
	REAL,	POROMETER	PRIVATE **	ofez1 = 100	constant in Bioos freezing
	REAL,	PARAMETER	PRIVATE **	pfr z = 100	l constant in Biggs Neezing
	REAL	PARAMETER	PRIVATE ::	acrmin = 1.e-9	minimum values for gr. gs. and go
	REAL	PARAMETER.	PRIVATE ::	ncmin = 1.e1	minimum value for Nc
	REAL,	PARAMETER,	PRIVATE ::	nrmin = 1.e-2	minimum value for Nr
	REAL,	PARAMETER,	PRIVATE ::	eacrc = 1.0	Snow/cloud-water collection efficiency
	REAL,	PARAMETER,	PRIVATE ::	dens = 100.0	Density of snow
	REAL,	PARAMETER,	PRIVATE ::	qs0 = 6,e-4	threshold amount for aggretion to occur
Į.					
	REAL,	PARAMETER,	PRIVATE ::	satmax = 1.0048	maximum saturation value for CCN activation
					1.008 for maritime /1.0048 for conti
	REAL,	PARAMETER,	PRIVATE ::	actk = 0.6	parameter for the CCN activation
	REAL,	PARAMETER,	PRIVATE ::	actr = 1.5	radius of activated CCN drops
	REAL,	PARAMETER,	PRIVATE ::	ncrk1 = 3,03e3	Long's collection kernel coefficient
	REHL,	PHRHMETER,	PRIVHIE ::	ncrk2 = 2,59e15	Long's collection kernel coefficient
	DEAL	DODOMETED	DDTUATE **	$d_1 = 00 = 1 = -4$	parameter related with accretion and collection of cloud drops
	REAL,	POROMETER	PRIVATE ::	$d_12000 = 0_{+}e^{-4}$	parameter related with accretion and collection of cloud drops
	REAL	PARAMETER	PRIVATE ++	$di82 = 82.e^{-6}$	dimater related with raindrops evaporation
	REAL	PARAMETER	PRIVATE **	di15 = 15.e-6	auto conversion takes place beyond this diameter
					and control offen balloo prace begoing onto dramotol

*Tunable parameters

SUBROUTINE wdm6

DO j = jts, jte CALL wdm62D ENDDO

- follows the double-moment processes in Lim and Hong

do k = kts, kte do i = its, ite supsat = max(q(i,k),qmin)-qs(i,k,1)satdt = supsat/dtcld praut: auto conversion rate from cloud to rain [CP 17] $(C \rightarrow R)$ lencon = 2.7e-2*den(i,k)*qci(i,k,1)*(1.e20/16.*rslopec2(i,k) *rslopec2(i.k)-0.4) lenconcr = max(1,2*lencon, qcrmin)if(avedia(i,k,1).gt.di15) then taucon = 3,7/den(i,k)/qci(i,k,1)/(0,5e6*rslopec(i,k)-7,5) praut(i.k) = lencon/taucon praut(i,k) = min(max(praut(i,k),0,),qci(i,k,1)/dtcld) nraut: auto conversion rate from cloud to rain [CP 18 & 19] (NC->NR) nraut(i,k) = 3.5e9*den(i,k)*praut(i,k) if(grs(i.k.1).gt.lenconcr) nraut(i,k) = ncr(i,k,3)/grs(i,k,1)*praut(i,k) nraut(i,k) = min(nraut(i,k),ncr(i,k,2)/dtcld) endif [CP 22 & 23] pracw: accretion of cloud water by rain (C->R) nracw: accretion of cloud water by rain (NC->)if(qrs(i,k,1),ge,lenconcr) then if(avedia(i,k,2).ge.di100) then nracw(i,k) = min(ncrk1*ncr(i,k,2)*ncr(i,k,3)*(rslopec3(i,k) + 24.*rslope3(i,k,1)),ncr(i,k,2)/dtcld) pracw(i,k) = min(pi/6.*(denr/den(i,k))*ncrk1*ncr(i,k,2) *ncr(i,k,3)*rslopec3(i,k)*(2.*rslopec3(i,k)) + 24.*rslope3(i,k,1)),qci(i,k,1)/dtcld) else nracw(i,k) = min(ncrk2*ncr(i,k,2)*ncr(i,k,3)*(2.*rslopec3(i,k) *rslopec3(i,k)+5040.*rslope3(i,k,1) *rslope3(i,k,1)),ncr(i,k,2)/dtcld) pracw(i,k) = min(pi/6.*(denr/den(i,k))*ncrk2*ncr(i,k,2) *ncr(i,k,3)*rslopec3(i,k)*(6.*rslopec3(i,k)) *rslopec3(i,k)+5040.*rslope3(i,k,1)*rslope3(i,k,1)) ,qci(i,k,1)/dtcld) endif endif

**** Warm rain processes** (Hong and Lim 2010)

*Auto conversion from cloud to rain $[C \rightarrow R]$

Praut [kgkg⁻¹s⁻¹] =
$$L/\tau$$
 $L = 2.7 \times 10^{-2} \rho_a q_c \left(\frac{10^{20}}{16\lambda_c^4} - 0.4\right)$
 $\tau = 3.7 \frac{1}{\rho_a q_c} \left(\frac{0.5 \times 10^6}{\lambda_c} - 7.5\right)^{-1}$

Nraut[m⁻³s⁻¹] =
$$3.5 \times 10^9 \frac{\rho_a L}{\tau}$$

&

&

&

8,

&

8,

8,

&

8,

&

*Accretion of cloud water by rain $[C \rightarrow R]$ $-D_R \ge 100 \ \mu\text{m}$ Pracw $[\text{kgkg}^{-1}\text{s}^{-1}] = \frac{\pi}{6} \frac{\rho_W}{\rho_a} K_1 \frac{N_C N_R}{\lambda_c^3} \left\{ \frac{2}{\lambda_c^3} + \frac{24}{\lambda_R^3} \right\}$ Nracw $[\text{m}^{-3}\text{s}^{-1}] = -K_1 N_C N_R \left\{ \frac{1}{\lambda_c^3} + \frac{24}{\lambda_R^3} \right\}$ $-D_R < 100 \ \mu\text{m}$ Pracw $[\text{kgkg}^{-1}\text{s}^{-1}] = \frac{\pi}{6} \frac{\rho_W}{\rho_a} K_2 \frac{N_C N_R}{\lambda_c^3} \left\{ \frac{6}{\lambda_c^6} + \frac{5040}{\lambda_R^6} \right\}$ Nracw $[\text{m}^{-3}\text{s}^{-1}] = -K_2 N_C N_R \left\{ \frac{2}{\lambda_c^6} + \frac{5040}{\lambda_R^6} \right\}$

Thank you !

Model versus Data assimilation

Model physics has not been changed, but much in data assimilation

Global model predictability highly depends on initial data quality

Model is perfect ? or Saturated ? or less important than assimilation ?

If the model is upgraded ? (MRF → YSU)

Model versus Data assimilation

Differences in model physics overwhelms the differences in data assimilation package

The impact of model uncertainties on analyzed data in a global data assimilation system (Hong et al. TAO, in review)

Model versus Data assimilation

Synoptic scale variability highly depends upon the initial condition

Efforts given to model physics and dynamics play an nontrivial role in improving the initial condition

Data → Assimilation → Dynamics → Physics → Forecast

