

Mechanisms for boundary layer wind response to the Gulf Stream in a regional atmospheric model

Kohei Takatama, S. Minobe, M. Inatsu (Hokkaido University)

R. J. Small 45N (National Center for Atmospheric 40N

1. INTRODUCTION

Air-sea interaction over cool ocean

- Low resolution studies (before early '00s)
 - Basin scale long-time averaged SST is negative correlated with surface wind speed
 - Cool ocean was thought to be passive for atmosphere.

Air-sea interaction over cool ocean

10-m wind speed

Obs

- Low resolution studies (before early '00s)
 - Basin scale long-time averaged SST is negative correlated with surface wind speed
 - Cool ocean was thought to be passive for atmosphere.
- High resolution studies (after early '00s)
 - Surface winds exhibit narrow structures anchored on oceanic currents.
 - Cool ocean can be active for atmosphere.

Atmospheric response to the Gulf Stream

 Π

[Minobe et al. 2008] How the surface wind convergence is occurred?

70W

6ÓW

5Ó₩

40W

3ÓW

60° W

3.5

3

50° W

45 5

35 N

40° W

5.5 6

- High-reso. 3D studies (Late '00s) — Deep upward wind, high-cloud,
 - enhanced precipitation are found over the surface convergence zone.
 - Gulf Stream: Minobe et al. (2008)
 - Agulhas return cur.: Liu et al. (2007)
 - Kuroshio ext.: Tokinaga et af (2010)

SST fronts affect
the entire troposphere
30N

Gulf Stream

10-m wind convergence

Mechanisms of wind response to SST fronts

Downward momentum mixing mechanism (Wallace et al. 1989)

Pressure adjustment mechanism (Lindzen and Nigam 1987)

2. MODEL AND METHOD

Momentum budget analysis

- Conventional diagnostics: momentum budget at a certain height
 - Tropics: Small et al. (2003); The gulf Stream: Wai and Stage (1989), Song et al. (2006); Southern ocean: O'Neill et al. (2010); Idealized front: Spall et al. (2007), Skyllingstad et al. (1989)

$$\frac{\partial \vec{u}}{\partial t} = -f\vec{k} \times \vec{u} - \vec{u} \nabla \cdot \vec{u} - \frac{1}{\rho} \nabla p + \frac{\partial \vec{\tau}}{\partial z} \qquad z - \underbrace{\qquad}_{\text{Net vertical friction}} z$$

• Our new diagnostic section momentum budget of a vertically integrated air column $\vec{\partial U} = -f\vec{k} \times \vec{U} + \vec{A} - \nabla P + \vec{\tau}(Z) - \vec{\tau}(0)$ z=Z $T(Z): momentum in put: vertically integrated air column <math>\tau(Z): momentum in put: vertically integrated air column in put: vertically integrated$

In the case of pure downward momentum mixing mechanism

Our new diagnostics show contribution of the downward momentum mixing.

$$u_1 = \frac{1}{\varepsilon} \vec{\tau}(Z)$$

The conventional diagnostics show only balance, cannot show the contribution.

$$\frac{\partial}{\partial z}\vec{\tau}=0$$

... and the pressure adjustment mechanism

The net vertical friction term always work as dumping.

Diagnostics for convergence

Our basic equation:

 $0 = -f\vec{k} \times \vec{U} + \vec{A} - \nabla P + \vec{\tau}(Z) - \vec{\tau}(0)$

Where is the pressure adjustment contribution?

 $-\nabla \cdot \vec{U} = -\frac{1}{f} \nabla \times (\vec{A} + \vec{\tau}(Z) - \vec{\tau}(0))$ > Pressure adjustment mechanism should cause convergence through surface stress.

• Considering that $\vec{\tau}(0)$ is linear sum of each forcing,

- $\vec{\tau}(0) =$ forcing due to the downward momentum mixing mechanism + forcing due to the pressure adjustment mechanism + forcing due to horizontal advection + forcing due to ...
- $\vec{\tau}(0)$ can be treated as $\vec{\tau}(0) = \varepsilon \vec{U}$ $0 = -f\vec{k} \times \vec{U} + \vec{A} - \nabla P + \vec{\tau}(Z) - \varepsilon \vec{U}$

This is only an assumption in our diagnostics.

Diagnostics for convergence

• Diagnostic equation for convergence is:

Experimental design

- Model: IPRC Regional Climate Model (Wang 2002)
- Domain:
 - $-100^{\circ}W-20^{\circ}W$
 - 5°N-65°N
- Resolution
 - Horizontal: 0.5°
 - Vertical: 28 σ layers
- Period: 5 years (Dec. 2001- Nov. 2006)
- Boundary condition
 - Lateral: NCEP reanalysis 1 (6hourly, 2.5°)
 - SST: NCEP Real Time Global SST (daily, 0.5°)

3. RESULT

Reproducibility of the 10-m wind conv.

Annual climatology of 10-m wind convergence (color), SST contour, wind vector

Spatial pattern is successfully captured by the model.

Reproducibility of the tropospheric response

{Ⅲ

Validation of the diagnostics

Annual climatology of vertically averaged momentum convergence

This ascertains the validity of the assumption.

The surface winds are well represented by the vertically averaged momentum

Contribution of each mechanism

Spatial pattern of the pressure adjustment mechanism

Spatial pattern of the downward momentum mixing mechanism

Spatial pattern of the downward momentum mixing mechanism is explained by downwind SST gradient.

Seasonal dependeincy

4. SUMMARY

Summary

- We apply new diagnostics for 5 years integration of IPRC regional climate model.
- The dominant (~70%) pressure adjustment mechanism and the secondary (~30%) downward momentum mixing mechanism coexist for the surface wind divergence/convergence over the Gulf Stream.
- The contributions of these mechanisms are qualitatively explained:
 - the SLP Laplacian for the pressure adjustment mechanism,
 - the downwind SST gradient for the downward momentum mixing mechanism.

Seasonal changes

90W 80W 70W 60W 50W 40W 30W

