

Validation of Regional Weather Forecast for Deep Convection over Indian Subcontinent

Amit P Kesarkar, M Rajeevan, T Narayan Rao, Jyoti Bhate, K. Sai Kranthi, A Madhu Latha and C K Unnikrishnan

NARL, Gadanki, Andhra Pradesh, India

Convection

 8:30 am of 16th July
 Afternoon 1 pm 16th July 2010

 2010
 10th RSM Workshop
 2

Objectives of WCRG

- Research in real time weather forecasting and nowcasting.
- Provide operational weather forecast for SHAR during launching operations.
- Capacity building for forecasting
 of behaviour of deep convection
 (thunderstorms / cyclones)

Aug 09, 2010 7 Aug 2010

Scientific Objective

To analyze capacity of Mesoscale models to forecast

- Occurrence
- Time of Genesis and duration
- Intensity

of thunderstorms occurring over SHAR – Gadanki – Chennai Region

Outline

- Climatology
- Regional Weather Forecasting system
- Deep convective evidences
- Forecast validation
- Conclusions

Climatology of Convective Activities

Aug 09, 2010

Latitudinal Variations: Premonsoon

Aug 09, 2010

Latitudinal Variations: SW Monsoon

Latitudinal variation of Lighting Flash Density for the period 1998 to 2005.

Latitudinal variation of Lighting Flash Density for the period 1998 to 2005

Aug 09, 2010

Latitudinal Variations: NE-Monsoon

Aug 09, 2010

Latitudinal Variations: Winter

Aug 09, 2010

Forecasting System

Aug 09, 2010

Modeling Domain and Configuration

Model: WRFV 3.2

Spatial Resolution 27 Km

Temporal Resolution: 120 Sec

Forecasts for 72 hours

Physics

- Microphysics: Thompson
- Cumulus: BMJ
- PBL: YSU
- Longwave Radiation: RRTM
- → Shortwave Radiation: Dudhia

Details of Data Assimilation

- Using Objective Analysis
- Multiquardratic Scheme (Nuss and Titley, 1994)
- Most accurate among the other method
 - MST RADAR
 - GTS Data (Internet)
 - ISRO AWS
 - ISRO Kalpana AMV
 - ISRO GPS Sonde
 - ~ 200 vertical profiles from FSL

ISRO AWS Network

Severe Deep Convective Evidences

Date	Local Time (IST)	UTC	Accumulated Rain (mm)	
30 th May 2009	15:32:00 - 16:37:00	10:02:00 - 11:07:00	12.66	
30 th Jun 2009	18:27:00 - 20:24:00	12:57:00 - 14:54:00	24.37	
04 th Jul 2009	18:15:00 - 19:47:00	12:45:00 - 14:17:00	16.45	
09 th Jul 2009	17:14:00 - 18:10:00	11:44:00 -12:40:00	10.14	
14 th Aug 2009		06:30:00 PM		
15 ⁿ Aug 2009	00:00:00 - 09:52:00	04:22:00 AM	18.24	
21 st Aug 2009	22:40:00 - 23:37:00	17:10:00 - 18:07:00	18.32	
01 st Sep 2009		19:29:00 - 21:26:00		
02 st <u>Sep</u> 2009	00:59:00 - 02:56:00		13.69	
18 th Sep 2009	13:19:00 - 14:24:00	07:49:00 - 08:54:00	32.46	
06 th Nov 2009	22:57:00 - 23:59:00	17:27:00 - 18:29:00	10.29	
06 th Nov 2009	18:30:00 - 23:04			
07 th Nov 2009	00:00:00 - 04:34:00		28.32	
08 th Nov 2009 09 th Nov 2009		18:30:00 - 00:50:00		
	00:00:00 - 06:20:00		15.65	
18 th Nov 2009	14:35:00 - 18:48:00	09:05:00 - 13:18:00	16.01	
14 th Dec 2009 15 th Dec 2009		22:28:00		
	03:58:00 - 07:33:00	02:03:00 AM	47.07	
15 th Dec 2009	19:02:00 - 22:56:00	13:32:00 - 17:26:00	11.65	

Actual and Forecast Rainfall during Deep Convection cases

contingency tables

Category 1: 7.6 – 35.5 mm Moderate rain

Category 2: 35.6 – 64.4 mm Rather heavy rain

	obsyes	obs no	total
fc yes	0	0	0
fc no	1	0	1
total	0	0	1

Spatial Rainfall Distribution: May 30th 2009

WRF forecast

40

35

25

20

Spatial Rainfall Distribution: Jun 30th 2009

Aug 09, 2010

Spatial Rainfall Distribution: Jul 4th 2009

Generated by NASA's Giovanni (giovanni.gsfc.nasa.gov)

Aug 09, 2010

GrADS: COLA/IGES

VAF

Spatial Rainfall Distribution: Jul 09th 2009

Aug 09, 2010

10th RSM Workshop

VAP

Spatial Rainfall Distribution: Aug 14-15th 2009

Aug 09, 2010

Spatial Rainfall Distribution: Aug 21st 2009

- 35

Aug 09, 2010

10th RSM Workshop

Spatial Rainfall Distribution: Sep 01 – 02st 2009

Aug 09, 2010

Spatial Rainfall Distribution: Sep 18th 2009

Aug 09, 2010

10th RSM Workshop

VAR

Spatial Rainfall Distribution: Nov 06th 2009

Generated by NASA's Giovanni (giovanni.gsfc.nasa.gov)

Aug 09, 2010

Spatial Rainfall Distribution: Nov 06-07 2009

90

80

70

60

50

40

30

20

10

Generated by NASA's Giovanni (giovanni.gsfc.nasa.gov)

Aug 09, 2010

GrADS: COLA/IGES

10th RSM Workshop

10

9(

8(

70

6(

5(

4(

3(

20

10

Spatial Rainfall Distribution: Nov 08-09 2009

Aug 09, 2010

Spatial Rainfall Distribution: Nov 18 2009

NARL

Aug 09, 2010

GrADS: COLA/IGES

Spatial Rainfall Distribution: Dec 14 - 15 2009

Generated by NASA's Giovanni (giovanni.gsfo.nasa.gov)

Aug 09, 2010

GrADS: COLA/IGES

10th RSM Workshop

VAF

80

70

BO

50

40

30

20

Case 1: May 30, 2009 10:02:00 – 11:07:00 UTC

MAR

Case 2: Jun 30, 2009 12:57:00 14:54:00 UTC

Case 3: Jul 04 2009, 12:45:00 – 14:17:00 UTC

Case 4: Jul 09, 2009 11:44:00 – 12:40:00 UTC

Case 5: 06:30:00 PM 14 Aug 2009 04:22:00 PM 15 Aug 2009

Case 6: 15 Aug 2009 00:00:00 - 04:22:00

Case 7: Aug 21, 2009 17:10:00 – 18:07:00 UTC

Case 8: Sep 01, 2009 19:29:00 – 21:26:00 UTC

Case 9: Sep 18, 2009 07:49:00 – 08:54:00 UTC

Case 10: Nov 06, 2009 18:30:00 -23:04:00 UTC

Case 11:

10th RSM Workshop

Case 12: Nov 08 18:30:00 UTC – Nov 09 00:50:00 UTC

Aug 09, 2010

Case 13: Nov 18, 2009 09:05:00 – 13:18:00 UTC

Aug 09, 2010

Case 14: 14th Dec 2009 22:28:00 UTC – 15 Dec 2009 02:03:00 UTC

Case 15: Dec 15, 2009 13:32:00 – 17:26:00 UTC

Typical Wind Validation

Aug 09, 2010

July 29, 2009:17:30 – 21:30 UTC

NARL 27Km WRF F/C Maximum Reflectivity over Gadanki

GFS initial Date: intl Level: Surface

Validation of Time of Occurrence and Duration

EVENT TIME			MODEL PREI	DICTION(KI)		MODEL PREDIC	TION(TTI)		
			48-72 HRS BEFORE	5 24-48HRS BEFORE	0-24 HRS BEFORE	48-72 HRS BEFORE	24-48HRS BEFORE	0-24 HRS BEFORE	
	IST	GMT	28062009	29062009	30062009	28062009	29062009	30062009	
30/6/2009	18:27	12:00	9:00-12:00	8:00-13:00	8:00-14:00	8:00-15:00	8:00-16:00	7:00-14:00	
	20:24	14:00							
			2072009	3072009	4072009	2072009	3072009	4072009	
4/7/2009 18	18:15	12:00	8:00-14:00	9:00-12:00	8:00-11:00	6:00-18:00	7:00-14:00	7:00-13:00	
	19:47	13:00							
			7072009	8072009		7072009	8072009	9072009	
9/7/2009 17	17:14	11:00	11:00	11:00		6:00-16:00	4:00-22:00	6:00-11:00	
	18:10	12:00							
			13082009	14082009	15082009	13082009	14082009	15082009	
5/8/2009	0:00	19:00	11:00-18:00	10:00-19:00	16:00-18:00	10:00-23:00	0:00-3:00	0:00-4:00	
	9:52	5:00					7:00-23:00		
						19082009	20082009	21082009	22082009
21/8/2009	22:40	17:00				0:00	8:00-9:00	0:00-2:00	0:00-3:00
	23:37	18:00				7:00-22:00	17:00-23:00	5:00-23:00	
			31082009	1092009	2092009	31082009	1092009	2092009	
2/9/2009 0::	0:59	19:00	13:00-23:00	0:00-2:00	13:00-16:00	0:00-23:00	0:00-23:00	0:00-2:00	
	2:56	22:00		8:00-20:00				13:00-16:00	
						16092009			
18/9/2009	13:19	11:00				0:00-1:00			
	14:24	12:00				14:00-22:00			
						16112009	17112009	18112009	19112009
18/11/2009	14:35	9:00				7:00-8:00	8:00-17:00	7:00-23:00	0:00-1:00
	18:48	13:00							

Validation of Vertical Velocity

Aug 09, 2010

10th RSM Workshop

53

Fig.Details of the thunderstorm observed over Gadanki on 21 May 2008. Left panels show the Doppler Radar reflectivity maps taken at 0715 hrs UTC (top) and 1045 hrs UTC (below). The right panels show the variation of meteorological parameters associated with the passage of the thunderstorm. The top panel shows the variation of dry bulb temperature (line) and rainfall in mm (vertical bar). The middle panel shows variation of wind chection (line) and wind speed (vertical variation). The Ottom panel shows the variation of Surface pressure on 21 May 2008.

Fig.3 Vertical velocity (m/sec) derived from the MST radar data on 21 May 2008. The top panel shows wind speed averaged over a minute and the bottom panel shows the same averaged over 15 minutes.

Aug 09, 2010

Conclusions

WRF is successful in simulating dynamics of dduring deep convection needs lot of attention to Atmospheric Physics representation

- Underestimates rainfall however in moderate category of rainfall most of the deep convection cases
- WRF does not simulate fall in temperature and changes in other surface parameters after occurence of deep convection
- Use of thermodynamic indices helpful in estimating time and duration of deep convective events

e-mail: amit@narl.gov.in

K Index

$$\mathbf{K} = \mathbf{t}_{850} - \mathbf{t}_{500} + \mathbf{t}_{d850} - \mathbf{t}_{700} + \mathbf{t}_{d700}$$

Aug <u>692-36510</u> scattered to scattered severe, a few tornados