Effects of diurnal cycle on the Asian monsoon : Modeling study

¹Jung-Eun Kim*, ¹Myung-Seo Koo, ²Masao Kanamitsu, and ¹Song-You Hong

> ¹Yonsei University, Korea ²Scripps Institution of Oceanography, USA

Introduction

Observational studies for diurnal cycle of precipitation

→ The maximum precipitation occurs in the late afternoon to early evening hours over land and at night or early morning over oceans.
 → It can be modulated by geographical (Dai 2001), and seasonal (Oki and Musiake 1994) characteristics.

Modeling studies for diurnal cycle of precipitation

1) Evaluation studies

→ Dai and Trenberth (2004) / Basu (2007)

: Evaluate the diurnal cycle of precipitation in a GCM

→ Koo and Hong (2010)

: Investigate the diurnal variations of precipitation over East Asia using a RCM

2) Inevitable component

→ Neale and Slingo(2003) : critical role of the Maritime Continent over the western Pacific in a simulated global climatology

 \rightarrow Sato et al. (20008) : resolution at less than 7 km in a simulated diurnal cycle of precipitation over Tibetan Plateau

➔ The diurnal forcing is a key factor in influencing the precipitation mechanisms over complex land-sea terrains, which in turn modulates large-scale circulations and embedded dynamics

Objective

- To examine the role of diurnal cycle on the summer monsoon circulations (precipitation) over Asia using a RCM
- Focusing on clarifying the diurnal effect of solar forcing on surface properties and upper-level features
- A dynamic influence of the Tibetan high on the monsoon climate will also be discussed.

Model setup

- Model : NCEP-RSM (Regional Spectral Model)
- Resolution : 151×112 (horizontal resolution : 60 km)
- Case : April to July 2004 (near normal monsoon) MJJ for analysis
- Convective Parameterized Scheme : SAS (Park and Hong 2007)
- Planetary Boundary Layer scheme : YSU PBL (Hong et al. 2006)
- SW and LW

- : M.D. Chou short wave (Chou and Lee 1996) / long wave (Chou and Suarez 1994) radiation scheme
- I.C & B.C : NCEP/DOE Reanalysis 2 (Kanamitsu et al. 2002)

Characteristics Experimnets	Solar forcing	SW/LW calculation interval
CTL	diurnal variation	SW=LW=1hr
NDI	Non-diurnal variation	SW=LW=24hr
the second s		

Model setup

The daily-mean solar flux in NDI run is prescribed from the value integrated for a given date.

Model setup

::: Remarks

 The analyzed data from the R-2 are updated every 24 hr to remove the diurnal variation of large-scale forcing at the lateral boundaries.
 Four sets of exp. with different initial time starting at 06 12 18 (31 March) and 00 UTC (1 April) are performed.

Model setup Validation

Despite the same solar forcing used for both runs, the averaged solar flux from the CTL is greater than that from the NDI experiment. Simulation results depend upon the external large-scale. However, the differences between CTL and NDI show the same direction for each set.

CNTL Evaluation

2010 RSM Workshop

CNTL Evaluation

CTL-RA2

Even though the CTL shows unstable structure over land, and cold bias over oceans, the amount is not distinct. → It provides confidence in this sensitivity results

Effects of diurnal cycle : CTL vs. NDI

SFC variables (1) CTL-NDI

SFC variables (2) CTL-NDI

2010 RSM Workshop

SFC variables (2) CTL-NDI

The areas of enhanced LH and precipitation are overlapped over the Indian oceans, but not in elsewhere.

Diurnal variation over land

The averaged flux from the CTL run overwhelms the amount from the NDI run.

Diurnal variation over ocean

What is the physical link of increased precipitation in the presence of diurnal forcing effect?

Vertical profile over Land

* The positive heat fluxes due to the diurnal cycle transports heat and moisture upward. \rightarrow It plays a role in enhancing the convective initiating, resulting in the increased precipitation.

Vertical Profile over Oceans

brings about the cloud formation in the nighttime when the temperature is cooled.

What is the reason for the reduction of precipitation over some areas centered in the Indo-China peninsula and south China?

Precipitation

Dynamic circulations CTL-NDI

850 hPa Wind (arrow) Vertically integrated moisture convergence (shading)

The Areas of enhanced precipitation over the oceans largely coincide with the convergence area.

→ Enhanced daytime PBL mixing due to the inclusion of diurnal cycle may lead to a subsequent feedback due to changes in large-scale circulation increasing the moisture.

 \rightarrow The monsoonal precipitation band in east Asia is shifted northward.

Thermal effect of the TP

Intraseasonal evolution

CTL-NDI

Summary

* Effects of diurnal cycle of solar forcing on the Asian monsoon circulations are examined on the platform of the regional climate modeling forced by analyzed forcing.

* From the comparisons of the simulations with (CTL) and without (NDI) diurnal solar forcing experiments, About 10 % increase over land and 3 % increase over the oceans of seasonal precipitation can be attributed to the effects of diurnal cycle.

Over land, surface hydroclimate is strongly influenced by the interaction between land and atmosphere, resulting in cooler surface temperature except for the TP region.
Over oceans, the increase of precipitation is robust by the enhanced planetary boundary layer mixing.

* The diurnal cycle is also found to contribute to the formation of the Tibetan high in the upper troposphere, which consequently influences the east Asian monsoon as well as Indian monsoon climate.

Concept & Modification

1

$$F = F_{e} \cos \Theta_{0} \implies Q = \int_{t} F(t) dt$$
Solar zenith angle
$$\int_{t}^{sunset} \cos \Theta_{0}(t) dt = \int_{-H}^{H} (\sin \varphi \sin \delta + \cos \varphi \cos \delta \cos h) \frac{dh}{\Theta}$$

$$\rightarrow \frac{1}{\pi} (\sin \varphi \sin \delta H + \cos \varphi \cos \delta \sin H) \qquad \text{Angular velocity of the earth}$$
* $\cos H = -\tan \varphi \tan \delta$

$$H = \cos^{-1}(-\tan \varphi \tan \delta) = \cos^{-1}(-\frac{\sin \varphi \sin \delta}{2})$$

 $\cos \varphi \cos \delta'$

In the code, hday means H (a half-day radian) Xmu means "cos (solar zenith angle)"