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Presenter
Presentation Notes
Good morning. My name is Noriko Ishizaki, and I am a posdoc at meteorological Research institute, Japan. Today I’d like to talk about our challenge about the validation problem. The title is “Spatial correlation of the observation data and its application to validate the regional climate model”. This is an ongoing work, so please understand that there are several problems.


S
Introduction

 Higher resolution model have been developed.
= How can we compare the model skill?

e The model value is representative of each grid. On
the other hand, the observational stations have

different spatial extent of representation.

Fig.1: Representative area at each grid in the model (a) or station (b).
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Firstly, I will explain the background of the validation problem. Recently, higher and higher spatial resolution model have been developed. Fine grid model is expected to show more realistic field such as the strong rainfall. We want to know the performance difference due to the resolution difference. How can we compare the model skill between the fine grid model and coarse grid model? The model value is representative of each grid. On the other hand, the observational stations have different spatial extent of representation, as shown this schematic figure.


®

Anisotropy of representativeness
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Spatial correlation of
meteorological variables may
be one indicator of the
representative area.

The shapes of high correlation
area are not isotropic.

They have different
distributions between
temperature and precipitation,
and seasons.

Fig.2: Distribution of the stations which have high correlation
coefficient of the surface temperature (left) and precipitation at Tokyo
AMeDAS station. Upper panels are for January, and lower panels are
for July.
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Presentation Notes
More important thing is the anisotropy of the representativeness of variables unlike the schematic figure. This figure shows the distribution of the stations which have high correlation with that of Tokyo. Upper panels are for January, and lower panels for July. These figures demonstrate that the shapes of high correlation are not isotropic. They have different pattern between the temperature and precipitation, and seasons. It may make more difficult to deal with the problem.
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Correlation decay distance (CDD)
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Figure 5 of Johansson, B. and D. Chen(2003): Scatter plot of correlation
between daily precipitation versus distance between stations.

(&

/CDD depends on...

»Wind speed (e.g., Johansson and Chen 2003)
» Geographical location (e.g., Jones et al. 1997, Hulme 1997)

»Season (e.g., Alexander et al. 2006)
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Presentation Notes
As shown the last slide, the correlation distribution is often used to see the extent of impact of a point. This is from Johansson and Chen (2003) showing the precipitation correlation versus distance between stations under different wind speed. As you can see, low wind speed case shows relatively greater variability. So they said precipitation is less widely spread at low wind speeds. According to the past studies, the correlation decay distance depends on the wind speeds, geographical location, and season. 
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Station to grid (objective analysis)

e Distance weighting
- APHRO JP (Kamiguchi et al. 2010)

- Hofstra, N. and M. New (2009) /Distance, Altitude, SIopD

. Slope direction, Facet
. ] ’
Regressmn Wind speed, Latitude,

- PRISM (Daly et al. 1994) Longitude, Distance to
- Mesh_Clim ocean... B,

e Kriging / Optimal interpolation
- JRA-25 (surface temperature)
- ERA15

Although there are various interpolation method, a reliability
or representativeness of a point have not been fully discussed
so far.
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Presentation Notes
With the various motivation like use for model validation, many statistical methods have been developed to make the gridded data from irregularly dispersed stations. The distance weighting is a simple method. However, the anisotropy characteristics cannot be considered in this method. Additionally, as many studies mentioned, the variation of the meteorological field should not be determined by only distance. In order to include various potential factors, regression method is used in PRISM or Japanese climatological data called Mesh_Clim. Optimal interpolation is more complicated method, I think, and this is partly applied in the reanalysis assimilation process. Although there are various interpolation method, the reliability or representativeness of a point have not been discussed well so far.


Purpose of this study

e How can we compare model skill with
different horizontal resolution?

COWhat is the parameter which characterize the
representativeness?

[CODHow should we quantify and use the
information of differences of
representativeness error for validation?

 We used the spatial correlation to see
the feature of representativeness.
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Presentation Notes
So the concern of this study is about how we can compare the model skill with different resolution. We’d like to clarify what parameter characterize the representativeness, and how can we quantify and use the information of differences of representativeness error for validation.


Representativeness of AMeDAS station
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AMeDAS stations (red dots) and 20km-NHRCM
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In this study, we firstly check the characteristics of the representativeness of observation system called AMeDAS over Japan. The mean horizontal resolution is about 17km. We use daily temperature and precipitation at 768 stations from 1980-2004. And three model is utilized. One is JRA-25 with horizontal resolution about 100 km. NHRCM is based on the operational model in Japan meteorological Institute. We used 20 km version. And JP10 is provided by the Scripps Institution of Oceanography which have 10 km resolution.
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Spread direction of representativeness
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Fig. 4: The direction and distance toward farthest station with

correlation of daily precipitation larger than 0.6.

In January, the direction extend parallel to the mountain ranges in many
regions. However, the length of the shape in the Japan Sea side gives
remarkable contrast to the Pacific side.
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Then I’ll show you the results. In order to the know the shape of the representativeness, the all stations which have high correlation larger than threshold is firstly marked. We find the farthest station among them, and its direction and distance is defined for this station. In January, you can find that the direction extend parallel to the mountain ranges in many regions. However, the length of the shape in the Japan Sea side gives remarkable contrast to the Pacific side. 
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January in Japan
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Cold air outbreak from Siberian high brings heavy snow to Japan Sea
side region during boreal winter. It is in contrast to Pacific side
which have less rain. The snow area corresponds to small CDD

region.
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This difference is considered to be from the climatological states. In January, cold air outbreak from Siberian high bring heavy snow to Japan Sea side region. This is the climatological winter precipitation, and the rainfall contrast is very clear between the Japan Sea side and Pacific side. The snow area corresponds to small correlation decay distance region.
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Spread direction of representativeness
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Fig. 4: The direction and distance toward farthest station with
correlation of daily precipitation larger than 0.6.

In July, CDD is relatively small in whole Japan compared to winter
season.
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As for summer time, the correlation decay distance is relatively small in whole Japan, compared to winter season.


July in Japan
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Precipitation amount generally becomes larger than winter season.
Much of rain is brought by convective rainfall events. This can explain
relatively small CDD in summer season in Japan.
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During summer time, precipitation amount generally become larger than winter season. And much of them are brought by convective rainfall events. The precipitation unit may smaller than that of winter. Thus, correlation decay distance becomes small.
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Simple interpolation for validation

1
4 > k=1 77 Ok
interp — Zﬂ, 1

B As a first step, we apply the
' , distance from stations to the target

sl B
grid as “weight” in order to prepare
- the gridded observation data set.
AMeDAS
Model We use all stations inside of a circle

=100km (JRA-25)
Radius < =20km (NHRCM)
=10km (JP10)

with radius the model resolution.

-
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So far, I explained the several factors which contribute to the anisotropy of the correlation. Essentially, we should develop the interpolation method using this information, but we attempt to try simple interpolation method for model validation. We apply the distance from stations to the target grid as weight in order to prepare the gridded observation data set using this equation. In this method, weight is function of only the distance. We use all stations inside of a circle with radius the model resolution. I made three kinds of interpolated data corresponding JRA-25, NHRCM and JP10.
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Example of 100km-JRA: Temperature

Tsfc_JRA Bias: R=100km—Interp
(a)Amd_Jan = ¢| (b)Int—Amd (c)JRA (d)Bias

N

130E  135€  140E  145E
[ [ T -y 1 1 ] -
4 -2 0 2 4 6 B 10 12 -3 -2 -1-050 05 1 2 3

45N

40N -
January |

N

asnd .| (f)Int—Amd IL (g)JRA Il (h)Bias
. -' o N
s0NY " , o
July
e v ; | BN
L ANUNEEE N | ||
30N . : : :

1:."m-: 13;55 ﬁus 14"5E
[ T I e——l [ [ ] —_——
12 14 16 18 20 22 24 26 28 -3 -2 =-1-0.50 05 .' 2 3
AMeDAS Interpolated AMeDAS JRA-25 Bias

into JRA resolution



Presenter
Presentation Notes
This is an example of 20km-NHRCM temperature. The leftmost figures is for original AMeDAS temperature, and second left is interpolated AMeDAS into NHRCM resolution. The value is corrected by the elevation. Now we can compare the model and observation at the same grid, and the rightmost figure indicates temperature bias. 
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Example of 20km-NHRCM: Temperature
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This is an example of 20km-NHRCM temperature. The leftmost figures is for original AMeDAS temperature, and second left is interpolated AMeDAS into NHRCM resolution. The value is corrected by the elevation. Now we can compare the model and observation at the same grid, and the rightmost figure indicates temperature bias. 
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Example of 10km-JP10: Temperature
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This is an example of 20km-NHRCM temperature. The leftmost figures is for original AMeDAS temperature, and second left is interpolated AMeDAS into NHRCM resolution. The value is corrected by the elevation. Now we can compare the model and observation at the same grid, and the rightmost figure indicates temperature bias. 
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This is an example of 20km-NHRCM temperature. The leftmost figures is for original AMeDAS temperature, and second left is interpolated AMeDAS into NHRCM resolution. The value is corrected by the elevation. Now we can compare the model and observation at the same grid, and the rightmost figure indicates temperature bias. 
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This is an example of 20km-NHRCM temperature. The leftmost figures is for original AMeDAS temperature, and second left is interpolated AMeDAS into NHRCM resolution. The value is corrected by the elevation. Now we can compare the model and observation at the same grid, and the rightmost figure indicates temperature bias. 


()

Example of 10km-JP10: Precipitation

Rctm JP1D Bms R=10km—Interp

CJar Wd M/M .
January™ 2 ﬁ_ .-

: P g

: D Rage®

) by 5
35N R X
1":._!.=’ 3 ‘:

L) SLAE NUSE R
130E  135€  140E  145E
-..-'_:___"‘

[ [ [ o ]
2 3 5 7 10 13 16 20 GSEGSDE?GBE‘ R 3

.IulymN

13h|-: 13;55 14‘hE 1.{'55
-] I
] 2 3 5 i 10 13 16 20 0.330.50.670.83 1 1.2 ‘I_.5 2 3
AMeDAS Interpolated AMeDAS JP10 Bias
into

JP10 resolution

I I = s N N



Presenter
Presentation Notes
This is an example of 20km-NHRCM temperature. The leftmost figures is for original AMeDAS temperature, and second left is interpolated AMeDAS into NHRCM resolution. The value is corrected by the elevation. Now we can compare the model and observation at the same grid, and the rightmost figure indicates temperature bias. 


B
Intercomparison of model bias with
different horizontal resolution

The summation of the weight in
k=1 each grid can be regarded as the
index of reliability of the
interpolated value.

To avoid concentration of weight
at few grids, the weight function
is changed.

<A grid has a station which is mush closer to the
' grid compared to B grid. Thus, we consider the
representativeness error in A is relatively small.
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But, how should we compare the model bias with different horizontal resolution? We can simply compare the regional mean value. But in this study, the summation of the weight in each grid is regarded as the index of reliability of the interpolated value. In other words, we consider the interpolation error is mainly associated with the representative error of the observation. In this case, A grid has a station which is much closer to the grid compared to B, so we consider the representativeness error in A is relatively small. To avoid concentration of weight at only few grids, the weight function is changed like this.
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Surface temperature bias over Japan
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Cold bias in winter of JP10 is mainly due to the heterogeneity of
observation (e.g., lack of data around mountainous region) and
incorrect treatment of the representativeness.
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This slide is for the surface temperature bias over Japan. The left figure is derived from average of all model grid and stations without interpolation. In this method, the observation is only one and bias is calculated using the differences between this and model. Blue colored JP10 has large cold bias especially in winter time. However, this cold bias turn out to be owing to the heterogeneity of observation and incorrect treatment of the representativeness.
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Precipitation bias over Japan
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Simple average of all grids/stations or inappropriate weight function
may lead misreading of the model skill.
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Similarly, the precipitation bias may change using the weighted regional mean. In this way, simple average of all grids or inappropriate weight function may lead misreading of the model skill. 


S
Problems

 The regional mean highly depends on small
number of grids.

 The effect of the wind fields or local
geographical factor is not still considered.

e |f we regard the weight of observation as a
index of representativeness error, we should
include the potential factors (which
contribute to the variation of meteorological
field) into the weight.
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However, as I mentioned previously, the weight defined by only distance may have several problems. First, the regional mean value highly depends on small number of grids.  Second, the effect of the wind field or local geographical factor is not still considered, although I already explain the association. If we regard the weight of observation as a index of representativeness error, we should include the potential factors into the weight.


Future Plan

 The shape of the high correlation area is
affected by the large-scale circulations, as
much as the local geographical features.

* |[n order to estimate the representativeness
error for validation, we should know the
potential factors in which contribute to the
shape of anisotropy of high correlation area
In Japan.
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Cluster analysis
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Next, we conduct the cluster analysis to investigate the relation with the geographical factor and synoptic circulations. Using the correlation coefficient, we divide Japan into some clusters. It is considered that the stations within the same cluster show similar daily variation. Generally, the correlation coefficient of the temperature is much larger than that of precipitation.
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Linear regression: Ex.1 Tsfc #2

Relation with synoptic scale circulation
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The regression pattern
with the sea level pressure
demonstrates negative
correlation with
temperature over the
Okhotsk Sea.

This pattern is quite similar
to the Yamase situation,
which is characterized by
the cold climate at Pacific
side in association with
appearance of Okhotsk
High.
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Today I’ll show you two examples. This is case of one cluster of the July surface temperature. The red points are belong to this cluster. To see the relation with synoptic scale circulation, the sea level pressure regression with the surface temperature in this cluster is shown. Color indicate the contribution rate. The regression pattern with the sea level pressure demonstrates negative correlation with temperature over the Okhotsk Sea. This pattern is quite similar to the cold summer situation called Yamase, which is characterized by the cold climate at Pacific side in association with appearance of Okhotsk High. The contribution rate exceeds 20 %.
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Linear regression: Ex.1 Tsfc #2

Relation with local geographical factors

Tsfc Cluster July #02

factors | Contribution[%]
Latitude 44.1
Longitude 26.2
Altitude 6.1
Distance to ocean 0.9

As other studies have mentioned, the several
geographical factors show no small relation with the
temperature as much as the large-scale circulation.
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On the other hand, when we checked the linear regression with the local geographical factors, the several geographical factors show no small relation with the temperature as much as the large-scale circulation.
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Linear regression: Ex.2 Tsfc #3
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Relation with synoptic scale circulation

July #03

The SLP regression pattern
indicates the relation with
the low pressure over the

Japan Sea and warming at
the stations of the cluster.

Similar pattern is often
seen during foehn events
over the coast of Japan Sea.
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This is another case of the surface temperature. This cluster is distributed along the Japan Sea side. The SLP regression pattern indicates the relation with the low pressure over the Japan Sea and warming at the stations in this cluster. Similar pattern is often seen during foehn events over the coast of Japan Sea.
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Linear regression: Ex.2 Tsfc #3

Relation with local geographical factors

Tsfc Cluster July #03

factors | Contribution[%]
Latitude 9.5
) Longitude 11.8
Altitude 71.7
Distance to ocean 0.3

The contribution rate of the relation between altitude is
remarkably high in this case.

The relation with the variation of precipitation is more
complicated...
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In this cluster, the relation between altitude is remarkably high. I cannot introduce all today, but the relation with the variation of precipitation is more complicated.


»
Summary

€ The variations of meteorological variables (temperature or
precipitation) are affected by the various local geographical
factors as much as the large-scale circulation. In association
with this, the anisotropy of correlation distribution will
change.

@ It is preferable to consider the representativeness error
when we compare the model results with different
horizontal resolution. As one way of thinking, we consider
the summation of weight in each grid as the index of
representativeness error.

€ Using model results and representativeness error, it is
possible to construct the analysis with greater accuracy.
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Then I’d like to summarize my talk. The variations of meteorological variables are affected by the various local geographical factors as mush as the large-scale circulation. In association with this, the anisotropy of correlation distribution will change. It is preferable to consider the representativeness error when we compare the model results with different horizontal resolution. As one way of thinking, we consider the summation of weight in each grid as the index of representativeness error. Using model results and representativeness error, it is possible to construct the new analysis with greater accuracy.
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That’s all, thank you.
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