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Abstract 
 
 For the purpose of producing datasets for regional scale climate change research 

and application, the NCEP/NCAR Reanalysis for the period 1948-2005 was dynamically 

downscaled to hourly, 10 km resolution over California using the Regional Spectral 

Model. 

 This is a Part 1 of two part paper, describing the details of the downscaling system 

and comparing the downscaled analysis (CaRD10) against observation and global 

analysis. An extensive validation of the downscaled analysis was performed using station 

observations, Higgins gridded precipitation analysis and Precipitation-elevation 

Regression on Independent Slopes Model precipitation analysis. 

In general, the CaRD10 near-surface wind and temperature fit better with regional 

scale station observations than the NCEP/NCAR reanalysis used to force the regional 

model, supporting the premise that the regional downscaling is a viable method to attain 

regional detail from large scale analysis.   This advantage of CaRD10 was found on all 

time scales, ranging from hourly to decadal scales, i.e. from diurnal variation to multi-

decadal trend. 

 Dynamically downscaled analysis provides ways to study various regional climate 

phenomena of different time scales because all produced variables are dynamically, 

physically and hydrologically consistent. However, the CaRD10 is not free from 

problems.  It suffers from positive bias in precipitation for heavy precipitation events. 

The CaRD10 is inaccurate near the lateral boundary where regional detail is damped by 

the lateral boundary relaxation. It is important to understand these limitations before the 

downscaled analysis is used for research. 
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1.  Introduction 

 Climate research, particularly application studies for water, agriculture, forestry, 

fishery and energy management require fine scale multi-decadal information of 

meteorological, oceanographic and land states.  Unfortunately, spatially and temporally 

homogeneous multi-decadal observations of these variables in high horizontal resolution 

are non-existent.  Some long term surface records of temperature and precipitation exist, 

but the number of observations is very limited and the measurements are often 

contaminated by changes in instrumentation over time.  Some climatologically important 

variables, such as soil moisture, surface evaporation, and radiation are not even measured 

on most of the continental U.S. 

 Reanalysis is one approach to obtaining long term homogeneous analysis of 

needed variables.  Unfortunately, the horizontal resolution of global reanalysis is of the 

order of 100 to 200 km, too coarse for many application studies.  Recently, regional 

reanalysis over North America was conducted (North American Regional Reanalysis, 

(NARR), Mesinger et al, 2006).  The horizontal resolution of 32 km and the duration of 

25 years used in that study are still not completely satisfactory for application 

requirements, but the product is definitely valuable.  We can expect to see exciting results 

soon from studies using the NARR.  

 In this paper, we present another attempt to produce even higher resolution 

regional “reanalysis” over a longer period for the state of California using a dynamical 

downscaling technique (California Reanalysis Downscaling at 10 km; CaRD10 hereafter).  

This method is based on the concept that small scale detail can be attained by laterally 

forcing the high resolution regional model with large scale analysis.  The major 
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assumption made in this process is that the small scale features are purely forced by large 

scale and the small scale never feeds back to the large scale.  This assumption holds well 

when the large scale forcing is strong (e.g. during winter and transient seasons), but may 

fail when the forcing is weak (e.g. during summer). 

 The essential difference between the dynamical downscaling method and data 

assimilation, which is used in NARR and in all the global reanalyses, is that the former 

does not utilize station observations to correct model forecast error.  In this context, the 

dynamical downscaling can be referred to as “regional data assimilation without 

observation” (von Storch et al, 2000).  As described later, dynamical downscaling can be 

improved by forcing the large scale part of the field within the regional domain.  This 

process reduces the forecast error of the “large scale” part of the regional model, 

particularly when the domain is large.  With this correction of large scale, the dynamical 

downscaling can be better termed “regional data assimilation without regional scale 

observation,” since the regional model knows the large scale observation indirectly 

through the global reanalysis. 

 The major objective of  Part 1 of this two-part paper is to demonstrate that the 

dynamical downscaling is capable of reproducing small scale detail which agrees better 

with station observations than the coarse resolution analysis, without injecting small scale 

observation.  In other words, the dynamical downscaling can serve as a regionalization of 

coarse resolution data assimilation analysis without conducting expensive high resolution 

data assimilation.   

 In Part 2 we describe a detailed comparison of the downscaled analysis with 

NARR.  In this part of the study, we aim at understanding the role of data assimilation for 



 5

small scale analysis and the importance of high horizontal resolution.  We also 

demonstrate the implied uncertainties in regional analyses. 

 This paper is organized as follows:  In section 2, the model and downscaling 

procedures are discussed.  In section 3, validation of the analysis based on station 

observation is presented.  Section 4 compares the CaRD10 precipitation with gridded 

precipitation analysis, namely Higgins analysis and PRISM (Precipitation-elevation 

Regression Independent Slopes Model) data, and Section 5 concludes the paper. 

2.  Model and dynamical downscaling procedure 

2.1.  The Regional Spectral Model 

 The Regional Spectral Model (RSM, Juang and Kanamitsu, 1994) is used in this 

study.  The model originates from the one used at the National Centers for Environmental 

Prediction (NCEP), but the code was updated with greater flexibility and much higher 

efficiency (Kanamitsu et al., 2005) at the Scripps Institution of Oceanography.  The RSM 

utilizes a spectral method (with sine and cosine series) in two dimensions.  A unique 

aspect of the model is that the spectral decomposition is applied to the difference between 

the full field and the time-evolving background global analysis field.  The model 

integration procedure mimics the prediction of perturbations, but it is not the perturbation 

prediction equation that is integrated in time.  The procedure would probably be better 

named as optimum spectral perturbation filtering method, in which full field minus base 

field, both of which are defined within the domain, is used to apply sine and cosine filter. 

 The model is based on the primitive equation system and it consists of momentum 

equation, thermodynamic equation, mass conservation equation and moisture equation.  

The primitive equation system is based on an approximation that the horizontal scale is 
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much larger than the vertical scale.  This approximation places a limit to the use of 

horizontal resolution depending on the vertical scale of the phenomena.  The regional 

scale phenomena, such as sea breeze, mountain-valley breeze and many of the flow 

regimes appearing along the coast of California are confined within the marine boundary 

layer and have the vertical scale of 1-3 km.  Therefore, the horizontal grid size of the 

quasi-hydrostatic equation model can be as small as 5-10 km.  On the contrary, the deep 

convective system which appears in the summertime over the Midwest has a vertical 

scale of more than 10 km and therefore, a horizontal resolution of 30 km or larger is 

preferred.  For the downscaling performed in this study, a horizontal resolution of 

approximately 10 km is used.  The use of this rather high resolution is based on the 

dominance of relatively small vertical scale phenomena in California  The choice is also 

based on the more practical desire to resolve complex topography in California as much 

as possible for the purposes of water management application. 

 The only difference in the dynamical core used in this study from the original 

RSM is the application of a process splitting time scheme (Williamson, 2002), in which 

physical processes are computed in parallel with the dynamical forcing terms, as opposed 

to computing them in a serial manner.  This scheme saves considerable computational 

time for parallel computing since it reduces the communication between the processors, 

by as much as a factor of two.   Other details of the parallelization and optimization of the 

model are described in Kanamitsu et al (2005a).  

 The physical processes included in the model are listed in Table 1.  The physical 

parameterization schemes used in RSM are fully tested in its global model counterpart -

the Global Spectral Model - with ensemble AMIP type runs.  The skill of the simulation 
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is reasonable and comparable to many other global models (Robertson et al., 2004).  For 

the application of the schemes to high resolution regional downscaling by RSM, no 

explicit changes of the physical processes are applied, except the horizontal diffusion. 

Among these physical processes, particular mention will be given to the Oregon 

State University Land Scheme (Pan and Mahrt, 1987) and the radiation.  The land scheme 

consists of two soil layers, 10cm and 190cm thick, where soil moisture and soil 

temperature are predicted.   Evaporation from the land surface is divided into two parts; 

direct evaporation and transpiration.  The formula of Chen and Dudhia (2001a, b) is used 

for direct evaporation (Kanamitsu and Mo, 2003).  The snow model is a simple 1-layer 

energy balance model.  Specifications of the land surface characteristics are described in 

Section 2.4. Other details of the scheme are described in Chen et al. (1996).  The 

vegetation type, vegetation fraction, and soil type are fixed climatology and do not evolve 

during the 57 years of downscaling. 

 Both short and long wave radiation schemes are taken from M.-D. Chou (Chou 

and Suarez 1994; Chou and Lee 1996).   Cloudiness is computed from relative humidity 

and vertical motion, as well as from marine boundary layer depth and intensity (Slingo, 

1987).  These clouds interact with the radiation scheme.  

As will be mentioned later in section 2.3, area average temperature and moisture 

in the regional domain are nudged to those of the reanalysis by the scale selective bias 

correction (SSBC) scheme (Kanamaru and Kanamitsu, 2006) to be described in more 

detail later.  Therefore the effects of CO2 and aerosol on the downscaled analysis of large 

scale free atmosphere will be minimal.  However, the surface fluxes will certainly be 

affected by CO2 and aerosol. These atmospheric compositions impact land states such as 
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soil moisture and snow through the change in radiation flux reaching the ground. In 

CaRD10, the CO2 concentration is fixed at 348 ppm throughout the 57 years of 

integration.  The aerosol is also fixed at seasonal climatological value by Koepke et al. 

(1997). This is one of several simplifications made in this downscaling and caution needs 

to be exercised when the downscaled products are used for diagnostics and application.  

2.2.  Model domain and topography 

 The model domain is shown in Figure 1.  The Mercator projection true at 60N is 

used in this study.  The domain covers the area from 29.466N to 45.719N, and 128.203W 

to 111.563W.  The model surface elevation is also shown in Fig. 1.  This domain is 

selected to focus on the state of California and the neighboring states, but it also 

incorporates requests from the ocean research community.  Note that the major limiting 

factor of the domain size is computer resource availability.  It should also be noted that 

the lateral boundary nudging zone extends to approximately 20-25 grid points from the 

boundary, reducing the useable domain.  These limitations will be remedied in the 

simulations with exactly the same downscaling system over the contiguous United States, 

currently in progress in collaboration with the Earth Simulator Center in Japan. 

 

2.3.  Scale Selective Bias Correction (SSBC) 

 The accuracy of the dynamically downscaled analysis depends on two factors:  

the assumption of one-way interaction and the accuracy of the regional model itself.  The 

former is a fundamental assumption in dynamical downscaling, which sets the theoretical 

limit to the methodology.  The latter factor consists of inaccuracies due to numerics 

(accuracy of the discretization method, and the treatment of the time evolving lateral 
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boundary conditions) and inaccuracies of the physical processes.  These inaccuracies can 

be reduced in principle by improving each component, but this requires diligent and 

continuous efforts, as seen from the fact that many operational numerical forecast centers 

are spending most of their resources on this sole purpose. 

 Kanamaru and Kanamitsu (2006) showed that the growth of large scale error 

spanning the regional domain has been the major cause of inaccuracies in the dynamical 

downscaling procedure using RSM, and the SSBC scheme can reduce this error. The 

scheme consists of three components: 1) nudging of the large scale part of the wind 

perturbation towards zero, 2) removing the area average perturbation of temperature and 

moisture at every model level and 3) adjusting the area mean perturbation logarithm of 

surface pressure to the corresponding difference of logarithm of surface pressure due to 

the area mean difference in the global and regional topography.  The combination of 

these procedures reduces the large scale error and improves the simulation of 

precipitation, makes the downscaling insensitive to the model domain, and allows the use 

of much weaker lateral boundary relaxation in RSM.  We apply this method to reduce the 

error greater than 1000 km. This cutoff scale is based on the average distance of 

radiosonde observations in the U. S. (approximately 250 km; Archer and Jacobson, 2003), 

and the resolution of the NCEP-NCAR reanalysis, which is about 200 km.  In CaRD10, 

however, SSBC is mostly effective on the area average and the largest scale because the 

domain is about the size of 1000 km x 1600 km. 

 

2.4.  Lateral forcing, SST and land characteristics  
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The lateral forcing is taken from NCEP-NCAR global reanalysis, hereafter 

referred to as NNR (Kalnay et al., 1996), which is the only reanalysis that goes back to 

the late 1940’s.  The 200 km resolution global Reanalysis is directly downscaled to 10 

km in this study.  This large downscaling ratio by RSM, about 20, did not cause any 

appreciable problem in the regional domain away from the lateral boundary relaxation 

zones, as envisaged by Juang and Hong (2001).  The 6-hourly reanalysis at model sigma 

levels is used to force the regional model.  The RSM model levels are chosen to match 

the reanalysis model levels, such that vertical interpolation is avoided.  The tendency of 

the global field is assumed to be constant during the 6 hours. 

 The ECMWF 40-year Reanalysis Sea Surface Temperature is used in the 

downscaling.  This SST (Fiorino 2004) is a combination of the SST analyses from the 

Hadley Center, the United Kingdom Met Office (monthly mean HadISST, prior to and 

including 1981) and NCEP (weekly NCEP 2DVAR SST, after 1982 inclusive), cleaned 

up at the ice edges and interpolated to daily analysis using the mean conserving 

interpolation scheme (Taylor et al, 2000).  We selected this SST primarily because it has 

been thoroughly checked through use in several reanalyses, and the data were readily 

available. 

 Land characteristics, namely vegetation types, vegetation fraction, and soil types 

are taken from the United States Geological Survey (USGS) compilation.  The original 

10-min resolution data were re-sampled to 30-min resolution to reduce the data volume 

size, and were then utilized in the downscaling.  The Oregon State University Land 

Model used in this study recognizes 12 types of vegetation as well as 16 types of soil.  
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For the vegetation fraction, seasonally varying climatology is used (thus, no long-term 

change in land characteristics is incorporated). 

Soil moisture and soil temperature are predicted by the model during the nesting 

period of 6 hours.  These predicted values are carried to the next nesting period, thus they 

evolve with time during the entire period of downscaling and interact with near surface 

atmosphere.  No attempt to prevent the land state from drifting to its own climatology 

was made.  As shown later, no apparent drift was observed during the 57 years of 

downscaling. 

 The topography is taken from USGS GTOPO30 and interpolated directly to the 

model grid.  The variance of topography used in the gravity wave drag parameterization 

(Alpert et al  1988) is computed as a variance of 30-minute topography within the 

regional model grid of 10 km. 

2.5.  Integration procedure 

 The downscaling is performed in three streams: 1948-69, 1968-89 and 1988-2005.  

The initial condition of the atmosphere and land is taken from the global reanalysis at 

00UTC on January 1, 1948, linearly interpolated to regional model grid.  In order to 

avoid spin-up of soil moisture, the three streams overlap over two-year periods, 1968-69 

and 1988-89.  The discontinuity in soil moisture after the two year overlap becomes very 

small. 

3.  Validation of the downscaled analysis against station observations 

 We demonstrate that the downscaled analysis fits better with observation than the 

coarse resolution global analysis, particularly with near surface observation in a regional 

scale.  Since the accuracy of the downscaled analysis is expected to vary with the time 
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scale, we performed the validation against surface observations by separating the time 

scale to hourly, daily, monthly, and decadal, including long term trend.  The station 

observation locations used for validation are plotted in Fig. 1 and listed in Table 2. There 

are three types of station observations.  Fifteen hourly buoy observations (courtesy of 

Steve Taylor; station names start with “b”), stations from the United States Historical 

Climatology Network (USHCN) (http://cdiac.ornl.gov/epubs/ndp/ushcn/newushcn.html) 

for monthly and daily means (three coast locations, “c”, six valley locations, “v”, and two 

mountain locations, “m”), and 12 daily airport station observations from the National 

Climatic Data Center (NCDC; three letter abbreviations).  

3.1 Daily Scale 

3.1.1 Wind over coastal ocean  

 The normalized wind vector anomaly correlation (Breaker et al, 1994) and vector 

root mean square error (RMSE) of two daily analyses, CaRD10 and NNR against fifteen 

buoy observations (Table 2.a and Fig.1) during January and August, 2000 are computed 

(Table 3).  This validation is of particular interest since the effect of local geography on 

coastal ocean wind is probably much simpler than that over land.  The locations of the 

buoys used in this comparison are shown as station names starting with ‘b’ in Fig. 1.  The 

statistical significance test performed separately for u- and v-components showed that the 

vector correlation lower than approximately 0.61 may occur by chance at a 95 % 

confidence level.  Table 3 clearly shows that for almost all the stations, CaRD10 has 

higher correlation and lower RMSE than NNR in January.   The statistical significance 

shows that the CaRD10 correlation is better than NNR only at a few stations (b14, b25, 

b26, and b42) but systematic improvements in many other stations suggest that the 
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superiority of CaRD10 over NNR is real.  The improvement is very large for buoy b25, 

which is located to the south of Point Conception, an area characterized by weaker winds 

with more temporal and spatial variability.  This location is also known as the place 

where the Catalina Eddy forms (more detail in section 3.3 and Part 2),  The average 

vector correlation and RMSE for all the buoys compared here are shown in the bottom 

row of Table 3.  Compared to NNR, the improvement of the RMSE in the downscaling is 

impressive.  As we discuss in section 3.4, caution should be exercised when simply 

comparing the area averaged skills, due to the difference in spatial sampling between 

coarse and fine resolution analyses.  

3.1.2 Wind over land  

We performed similar comparisons on wind over land using 12 airport stations 

(Table 4).  The station locations are shown as red cross-hair marks in Fig. 1 and listed in 

Table 2.c.  Overall, the fit of the two analyses to the land stations are much worse than 

those over ocean.  This is expected since the more complex surface topography on land 

produces a stronger influence on winds.  The differences in fit between the two analyses 

are more diverse, but CaRD10 seems to be consistently better than NNR, both in terms of 

correlation and RMSE.  The average correlation and RMSE for all the stations are shown 

in the bottom row of Table 4.  The CaRD10 fits better due to the detailed 10 km 

resolution topography. 

3.1.3 Near-surface temperature over land  

Table  5 compares the average of correlation, RMSE, and bias of daily mean and 

max/min temperature at 12 land stations in California for January and August, 2000 

(same stations as the wind verification over land).  The CaRD10 correlation ranges from 



 14

0.5 to over 0.9 for individual stations (not shown).  For the daily mean temperature, the 

CaRD10 result is about the same as NNR during January, and better in August.  In terms 

of mean bias removed RMSE, the CaRD10 is better in January and about the same in 

August. 

For max/min temperature, the CaRD10 correlation is higher than that of NNR, 

with the exception of daily minimum temperature in January, and the RMSE of CaRD10 

is less than that of NNR with the exception of daily max temperature in August.  Overall, 

the improvement of CaRD10 over NNR is not very large.  When looking at individual 

stations, the correlations and RMSE of daily max/min temperature with observations are 

mixed  However, there is no station where CaRD10 fails to outperform NNR both in max 

and min temperatures (not shown). 

For the station elevation corrected mean bias, the CaRD10 has a smaller bias than 

NNR in daily mean and maximum temperatures possibly due to the superior 

representation of surface characteristics in CaRD10.  The sign of daily mean temperature 

bias tends to vary between CaRD10 and NNR between January and August without much 

consistency. The most notable systematic bias which appeared in both CaRD10 and NNR 

is the positive bias in minimum temperature in January which reduces the daily 

temperature range. 

 The daily temperature ranges in summer and winter are compared with a large 

number of land stations in 1996 and are shown in Figure 2 (the National Weather Service 

Cooperative Observer Program observations were provided courtesy of Mary Tyree).  

The geographical patterns look fairly reasonable for both January and July but CaRD10 

tends to underestimate the temperature range, particularly in January. 
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3.2  Hourly scale 

We compared the CaRD10 wind speeds with buoy observations on hourly scale by 

compositing the monthly diurnal variation from two years (2000-01) of data.  We show 

the comparison at station b25, which is located to the south of Point of Conception, 

where the winds tend to be more variable than at other buoys (Figure 3).  We see that the 

agreement of the CaRD10 diurnal cycle with observation is reasonably good, but 

CaRD10 shows larger diurnal amplitude.  Similar agreement of diurnal cycle between 

CaRD10 and observations is found at other stations, but the amplitude difference varies 

significantly among stations. 

Another example of the composite of the diurnal variation of winds is shown in 

Figure 4.  This is the one month CaRD10 wind time-height composite compared with the 

observed composite taken from the special observation at Piedras Blancas (Ralph et al., 

2000, this particular figure is provided courtesy of Paul Neiman).  The observation is 

based on the hourly wind profiling radar deployed by NOAA.  The timing of the diurnal 

variation of low level wind speed is very well represented by CaRD10, although the 

variability tends to be lower (6.5 m s-1 in observation v.s. 4.5 m s-1 in CaRD10).  The 

variation of CaRD10 wind direction is fairly reasonable at around 1000m above ground, 

but tends to be too large near the surface. 

Overall, diurnal variation is fairly reasonably reproduced by the downscaling, 

although evaluation of the accuracy may require further study. 

3.3.  Synoptic examples 

 Comparison of the dynamically downscaled analysis with station observation in 

terms of correlation, RMSE, and bias is not sufficient to demonstrate the meteorological 
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quality of the downscaled analysis.  The integrity of CaRD10 can be more clearly 

demonstrated by showing examples of synoptic events.  Here, we present one typical 

meso-scale example of the Catalina Eddy. 

 The Catalina Eddy is well documented by Wakimoto (1987) and Mass and 

Albright (1989).  We took a typical case from Mass and Albright (their Fig. 2a) and 

examined the surface wind field from CaRD10.  As shown in Figure 5, the dynamically 

downscaled analysis detects the eddy at a reasonable location, demonstrating the 

capability of the dynamical downscaling.  Two discontinuity-like features in wind 

direction, one starting at Point Conception and the other extending from the south central 

region of the eddy toward the west-south-west direction are undocumented and worth 

further study. 

 We also examined coastally trapped wind reversal (CTWR) and Santa Ana events 

(see Part 2 for more detail) and found that the CaRD10 performs excellently in 

reproducing meso-scale features and its time evolutions.  Although these are limited 

examples, it is clear that dynamical downscaling is capable of reproducing synoptically 

consistent small scale details over ocean and land. 

3.4.  Monthly averages 

 Validation of monthly average daily mean and maximum temperature, and 

precipitation over land was performed using about 80 United States Historical 

Climatology Network land stations during 1948-96. The monthly average data are more 

easily available than the daily data and thus we have more observations available for 

comparison.  We show the fit of CaRD10 to these observations in January and August in 

Figure 6.  The monthly mean 2-meter temperature in January correlates very well, above 
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0.7 over the entire domain (Fig. 6a).  The correlation tends to be better along the southern 

coast of California than inland.  The correlation in August is lower by 0.1 compared to 

January.  In August the correlation tends to be lower along the coast and becomes better 

towards inland.  The correlation stays above 0.6 over the entire domain.  The reason for 

this geographical distribution of the CaRD10 temperature skill is not very clear, but some 

influence from ocean temperature is suspected.  Our preliminary investigation showed 

that the CaRD10 temperature for coastal land in summer correlates more weakly with 

coastal SST than observed.  This dominant local response over land in CaRD10 may be 

responsible for the poorer fit of temperature in August.  This problem may be due to the 

over-estimated effect of land surface atmosphere interaction in the model.  For the daily 

maximum temperature (not shown) during January, correlation is mostly over 0.7.  The 

lowest correlation occurs in the Central Valley area where the value is in the 0.6 range or 

lower, but other areas have very high correlations.  During August, the correlation tends 

to be lower, particularly in the southern half of the domain. 

 The correlations of monthly average precipitation are shown in Figure 6b and 

Table 6.  During January, correlation is fairly high in most of California, while it is lower 

in Nevada where less precipitation occurs.  During the summer, correlation is much lower 

(less than 0.6) over most of the domain.  This is partly due to the lack of precipitation 

during this period. 

 The comparison of area averaged correlation between CaRD10 and NNR is 

shown in Table 7.  We found that only daily mean and max temperature in January score 

better than NNR.  This disappointing result seems to be a sampling problem.  As 

discussed in more detail in section 4, when precipitation skill is computed using the 
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gridded observation, we found that there is a considerable small scale geographical 

variability in the temporal correlation (Fig. 10c and d).  There are areas of low skill to the 

east of the Sierras in CaRD10, while the skill of NNR is smoothed out and retains only 

larger scale without areas of low skill.  This geographical distribution resulted in lower 

area average skill for CaRD10 than for NNR.  A similar feature is expected for the near 

surface temperature although we cannot verify this since we do not have an independent 

near surface temperature analysis like PRISM for precipitation.  We believe that fine 

geographical structure of high and low skill is more useful than moderate skill at coarse 

resolution.  From this point of view, any comparison of area average skill between coarse 

resolution and fine resolution models needs careful interpretation.   

 The monthly variation of correlation of daily mean near surface temperature at 

selected coastal (3 stations), valley (6 stations) and mountain (2 stations) locations (Table 

2.b and Fig.1) is shown in Figure 7.  The coastal stations display high correlation in 

winter months but very poor correlation during the summer.  For the stations in the 

Central Valley, correlation is high in spring and fall, and lower again in summer, but not 

as low as the coastal stations.  Mountain station skill is mixed.  For the monthly mean 

precipitation (not shown), the correlation is better in winter over all stations (correlation 

of near 0.9) except stations v6 and m2 (correlation near 0.5). It is worse in summer, about 

0.5 at stations c1, c2, v2, v3 and m1 but lower at other stations, again reflecting few 

precipitation events in summer. 

3.5.  Long-term Linear Trend 

 For validation of longer time scales, we examined the linear trends for the 1950-

96 period at several selected stations (see Table 2.b and Fig. 1 for the station locations).  
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The linear trend was computed by the least square fit.  Table 8 shows the comparison for 

the January and August trends.  In January, the CaRD10 and observation trends agree 

fairly well, although the magnitude of the trend in the CaRD10 is consistently smaller 

(except mountain station m1).  All the trends in the observation are positive, while 

CaRD10 shows a small negative trend in the valley at some stations. The statistical 

significance test showed that some of the positive trends in observation are significant, 

while positive trends in CaRD10 do not pass the test with the exception of station m1.  In 

August, the CaRD10 trend does not agree with observation at all.  Observed trends are all 

positive, while the CaRD10 trends are all negative with the exception of the mountain 

stations.  More than half of the observed stations pass the statistical test of positive trend 

while negative trends in CaRD10 are statistically significant at all stations except one. 

This disagreement of CaRD10 with observation in summer needs to be examined in 

detail.  Preliminary research suggests several causes:  One possible cause is that the 

current downscaling does not take into account changes in land use, irrigation and 

urbanization, or changes in green house gasses and aerosol.  The second is that the land 

surface processes affect near surface temperature too strongly in the model.  Another 

possible reason is the effect of poorly analyzed coastal sea surface temperature with a 

cooling trend affecting the long term temperature trend over land. 

 Figure 8 shows the geographical distribution of linear trends of near surface 

temperature in CaRD10 for January and July.  In January, the warm trend is apparent 

over most of the land region.  The positive trend is greatest over the Sierra Nevada range 

and over Northern California/Oregon.  The Central Valley displays weak or no trend.  

During July, most of the area shows a negative trend with a slight positive over the 
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Sierras and part of Nevada.  There is a strong cooling trend in coastal ocean surface 

temperature, which seems to have some influence on the negative trend in the Central 

Valley.  The impact of coastal SST on California has not been well documented.  Further 

study of the possible problem of SST used in CaRD10 is warranted.  There is a strong 

month-to-month variability in the linear trend. 

 As the last demonstration of the validation of decadal variability, the seasonal 

variation of monthly mean precipitation at 11 coastal, central and mountain stations 

(Table 2.b and Figure 1) are compared between two periods, 1950-74 and 1975-96.  We 

observed a clear shift in the CaRD10 maximum precipitation month from Dec.-Jan. 

during the 1950-74 period to Jan.-Mar. during the 1975-96 period (Figure 9, lines with 

circles).  Similar shifts were found in the observations (Fig. 9, thick lines without circles).  

This shift is consistent with the trend in earlier streamflow timing discussed by Stewart et 

al (2005).  We also performed a statistical significance test of the time series of difference 

between February-March precipitation and December-January precipitation during the 

two periods, 1950-74 and 1975-96, and found that 8 stations out of 11 in observation and 

9 out of 11 in CaRD10 have a statistically significant shift in precipitation months 

between these periods.  Although this is just a simple demonstration, the CaRD10 is 

capable of reproducing decadal variability in the seasonal variation of precipitation. 

4.  Comparison with gridded precipitation analyses 

The validation of precipitation against station observation is problematic due to 

measurement error and the representativeness of the observation.  We try to overcome 

this problem by using high resolution gridded precipitation analysis.  We utilized two 

products, PRISM and Higgins analysis.  The PRISM (Daly et al., 1994, 2001, 2002) is a 
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method to analyze small scale precipitation distribution over complex topography by 

combining various information such as distance, elevation, cluster, vertical layer, 

topographic facet, coastal proximity, and effective terrain.  For PRISM, only monthly 

average analyses were available and we used them for validating monthly average and 

long term trend.  Higgins analysis (Higgins et al 2000) is based on modified Cressman 

successive-scan analysis technique, and is available daily on 1/8 degree grid.  We utilized 

this analysis for computing threat and bias scores of the daily CaRD10 precipitation. 

Figure 10a,b compares the bias of monthly climatology (January and August for 

1950-97) against the PRISM analysis for CaRD10 and NNR.  It is apparent that the bias 

in CaRD10 is large, exceeding 9 mm day-1 in some places. Large positive bias is 

primarily found on the windward side of the Sierras and large negative bias is found on 

the lee side of the Sierras.  It is noted that the NNR bias is much smaller, but the lack of 

small scale detail makes it difficult to judge the quality of the analysis. 

Equitable threat scores (Schaefer, 1990) and bias scores are standard measures of 

the precipitation skill of the model. The equitable threat score is defined as  

CHHOF
CHH
−−+

−  

where F is the number of grid points that forecast more than the precipitation threshold. O 

is the number of grid points that observe more than the threshold. H is the number of grid 

points that correctly forecast more than the threshold. CH is the expected number of 

correct forecasts due to chance (F*O/T) where T is the total number of grid points inside 

the verification domain.  The best bias score is 1.0. Scores above (below) 1.0 indicate wet 

(dry) bias of precipitation forecast. 
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Table 9 shows the daily CaRD10 precipitation skill score during January and 

August, 1998.  Higgins gridded precipitation analysis is used as observation to compute 

the threat and bias scores.  CaRD10 shows the best threat score at the threshold of 2 mm 

day-1.  The CarD10 bias score is reasonable for smaller precipitation thresholds, but a wet 

bias is apparent in larger precipitation thresholds. These scores suggest that CaRD10 

precipitation in January covers reasonable spatial extent as a whole, but too much 

precipitation occurs in the wrong places.  August precipitation is small and CaRD10 

shows no skill in the threat score.  Bias scores suggest that CaRD10 is too dry in August. 

Figure 10c,d is the temporal correlation of CaRD10 monthly averaged 

precipitation against the PRISM analysis in January, computed for the 1950-97 period.  

The CaRD10 correlation over the state of California is generally above 0.7, which agrees 

with the correlation against station observation shown in Fig. 6.  The correlation is 

particularly low on the lee side of the Sierra Nevada.  This is likely due to the lack of 

cloud water prediction in this version of the model, which prevents advection of cloud 

water to the lee side of the mountains, causing difficulties in reproducing precipitation 

spreading to the east of high mountain ranges.  The correlation of precipitation in the 

NNR is quite respectable, considering its coarse horizontal resolution.  The summer 

correlation is much lower (not shown), because precipitation events are very scarce in 

this season.  

 Finally, the 1950-97 trend in precipitation is compared between PRISM and 

CaRD10, as shown in Figure 11.  Both patterns agree quite well, with much more small 

scale detail in CaRD10.  The tendency of increased precipitation in the south and reduced 

precipitation along the northern California/Oregon coast stands out.  The negative 
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tendency along the high Sierra Nevada is very clear in CaRD10, and some hint of it is 

seen in PRISM. 

In summary, the comparison with gridded precipitation analysis indicated that the 

CaRD10 is reasonable in reproducing daily and year-to-year variation of monthly mean 

precipitation, as well as its long term trend.  However, the absolute amount of 

precipitation has a positive bias for heavy precipitation regions for daily time scale and 

the windward side of high mountains for monthly time scale.  These conclusions agree 

well with the CaRD10 comparison with station observations.  

A recent experiment showed that the overestimation of precipitation is related to 

the relaxed Arakawa Schubert convective parameterization used in CaRD10.  This 

parameterization was originally designed for use in coarser resolution global models, and 

was shown to perform excellently.  However, the parameterization tends to overestimate 

precipitation in a high resolution model. A test run with Kain-Fritsch convective 

parameterization scheme (Kain and Fritsch, 1993) with prediction of cloud water (Zhao 

and Carr, 1997) significantly reduced the wet bias over the CaRD10 domain.  

  

5.  Conclusions 

 The dynamical downscaling of NCEP-NCAR global reanalysis is performed over 

the state of California and the neighboring states and ocean.  The horizontal resolution of 

the regional model is 10 km and the output is produced every hour.  The integration 

period covers 57 years, from 1948 to 2005.  The SSBC is applied to reduce the error of 

the scale greater than 1000 km. 
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 Comprehensive validation of the downscaled analyses is performed using 

available buoy observations over coastal ocean and various land stations.  CaRD10 is also 

compared with the large scale boundary forcing (NNR) to make sure that the regional 

downscaling does provide regional scale information more accurately than the NNR.  In 

addition, comparison is made with the gridded precipitation analysis to further ensure the 

quality of the product.  These validations are separately performed for hourly, daily, 

monthly and decadal scales. 

 In general, the quality of the downscaled product is reasonably high.  The product 

is definitely better than the coarse resolution NNR.  There is a large difference in the 

quality between winter and summer, winter being better.  The winds over coastal ocean 

are significantly improved by downscaling.  Over land, the accuracy of CaRD10 near 

surface winds and temperature are good due to the finer topography resolved by the 

CaRD10.  The examination of typical meso-scale events, namely the Catalina Eddy, 

Coastally Trapped Wind Reversal and Santa Ana showed that the downscaling 

reproduces characteristic features very well.  There are some differences in the skill of 

the CaRD10 for daily and monthly mean time scales.  The monthly mean skill of 

temperature is generally higher in January, but lower in August than that of daily mean 

skill.  The long term trend of near surface temperature obtained from 1950-96 agrees 

fairly well with station observation in January, but the trend is underestimated. In August 

the trend is negative over a large part of the domain in CaRD10 while it is positive in the 

station observation.  This discrepancy is likely the result of poor representation of land 

process in the model, inaccuracies in the coastal sea surface temperature, and the use of 

climatology of land surface characteristics and atmospheric compositions in CaRD10.  
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 The precipitation skill against station observation showed that the correlation is 

reasonable on the order of 0.6-0.8 on the monthly scale.  However, there is a noticeable 

positive bias in large precipitation events.  Comparison with gridded analysis revealed 

that the CaRD10 daily time scale precipitation area with more than 10 mm day-1 can be 

1.5 times larger than that of the observation.  Although the gridded analysis cannot be 

fully trusted, particularly over complex terrain, it is likely that CaRD10 overestimated the 

precipitation.  The 1950-97 linear trend, however, agrees very well between CaRD10 and 

PRISM.  These precipitation validations suggest that although the absolute magnitude of 

the precipitation may be problematic, the long term trend, year-to-year variation, and 

probably day-to-day variation are reasonably good and can be used for climate research if 

we are sufficiently cautious. 

The advantage of dynamical downscaling over statistical downscaling is that all 

variables in the downscaled analysis are dynamically, physically and hydrologically 

consistent, at least within the framework of the downscaling system.  Thus, the 

downscaled analysis provides ways to study various regional phenomena of widely 

ranging time scales in a consistent manner.  However, it is important to understand the 

limitations of downscaled analysis before it is used for those studies.  

The results of more detailed validation of the CaRD10 are documented in 

Kanamitsu and Kanamaru (2006) which interested parties are encouraged to read.  Part 2 

of this paper describes an in-depth comparison of CaRD10 against NARR. The CaRD10 

dataset is currently available in-house at the Scripps Institution of Oceanography and web 

access of the entire dataset is available to general public (http://cec.sdsc.edu). The data 

can also be obtained by writing to the authors. 
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Figure captions  

Figure 1.  CaRD10 domain, surface elevation (m), and observation station locations 

used in CaRD10 validation.  Buoy observation stations are indicated by blue circles 

(names begin with “b,” courtesy of Steve Taylor).  The USHCN stations are indicated by 

black squares (names begin with “c,” ”v,” or ”m”) and the NCDC stations are indicated 

by red “cross-hairs” (three-letter abbreviations). 

Figure 2.  Comparison of daily temperature range for January (top panels) and July 

(bottom panels) 1996.  Left panels are observation (courtesy of Mary Tyree), and right 

panels are CaRD10. 

Figure 3.  Comparison of monthly mean diurnal variation of near surface winds for 

the average of 2000 and 2001 at buoy station b25. Mean daily wind is subtracted and 

only anomaly is plotted. Solid line is buoy observation and dashed line is CaRD10. X 

axis is time (UTC) and Y axis is wind speed (m s-1). 

Figure 4. Validation of composite diurnal variation of wind speed and direction at 

Piedras Blancas (35.7N, 121.3W) for the period June 24 to July 21, 1996. Left panel is 

observation (from Fig. 9 in Ralph et al. (2000); courtesy of Paul Neiman). Y axis is in 

meters. Right panel is CaRD10. Y axis is in hPa. Contour is wind speed in m s-1. Half 

barb = 2.5 m s-1 and full barb=5.0 m s-1. 

Figure 5.  An example of the Catalina Eddy as it appeared in the CaRD10 at 

1500UTC, May 22, 1984. Shades and arrows indicate winds at 10m above surface (m s-1). 

Figure 6.  Correlation of monthly average of a) daily mean temperature and b) 

precipitation with observation for the period 1948-96. 



 34

Figure 7. Variation of correlation of monthly mean temperature with observation for 

the period 1948-96 at coastal (c1 to c3), Central Valley (v1 to v6) and mountain (m1 and 

m2) stations. 

Figure 8.  1950-96 linear trend of 2-meter temperature (K year-1) for January (left) 

and July (right) in CaRD10. 

Figure 9.  Seasonal variation of monthly averaged precipitation (mm day-1)in 

CaRD10 at 11 selected observation locations.  1950-74 climatology and 1975-96 

climatology are plotted separately.  

Figure 10.  January mean precipitation comparison of CaRD10 and NNR against 

PRISM analysis for the 1950-97 period. Bias a) in CaRD10 and b) in NNR.  Unit mm 

day-1. Temporal correlations c) in CaRD10 and d) in NNR. 

Figure 11.  Comparison of the 1950-97 trend in January mean precipitation rate. a) 

PRISM and b) CaRD10.  Unit is in mm day-1 decade-1. 
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Table 1.  Physics of the Regional Spectral Model. 

 

 Parameterization Reference 

Convection Relaxed Arakawa Schubert Moorthi and Suarez (1992) 

Large scale condensation Evaporation of rain 

included 

 

Shallow Convection Tiedtke scheme  Tiedtke (1983) 

Boundary Layer Non-Local scheme Hong and Pan (1996) 

Surface Layer Monin-Obukhov   

Long wave radiation M.-D. Chou Chou and Suarez (1994) 

Short wave radiation M.-D. Chou Chou and Lee (1996) 

Cloud  Slingo Slingo (1987) 

Gravity wave drag Pierrhumbert Alpert et al (1988) 

Vertical Diffusion Richardson number 

dependent 

  

Land model OSU  Pan and Mahrt (1987) 

      Land characteristics USGS  

      Direct evaporation NCAR Chen (1996) 

Topography Smoothed mean from 

USGS GTOPO30 
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Table 2a.  Buoy station locations 

 

WMO ID Sign Location Latitude Longitude 

46011 b11 Santa Maria 34.88 N 120.87 W 

46012 b12 Half Moon Bay 37.36 N 122.88 W 

46013 b13 Bodega Bay 38.23 N 123.32 W 

46014 b14 Pt. Arena 39.22 N 123.97 W 

46022 b22 Eel River 40.78 N 124.54 W 

46023 b23 Pt. Arguello 34.71 N 120.97 W 

46025 b25 Santa Monica Basin 33.75 N 119.08 W 

46026 b26 San Francisco 37.75 N 122.82 W 

46028 b28 Cape San Martin 35.74 N 121.89 W 

46042 b42 Monterey 36.75 N 122.42 W 

46047 b47 Tanner Banks 32.43 N 119.53 W 

46053 b53 Santa Barbara E 34.24 N 119.85 W 

46054 b54 Santa Barbara W 34.27 N 120.45 W 

46062 b62 Pt. San Luis 35.10 N 121.01 W 

46063 b63 Pt. Conception 34.27 N 120.66 W 
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Table 2b.  Stations for monthly analysis (data obtained from United States Historical 

Climatology Network). 

 

COOP ID Sign Location Latitude Longitude 

042910 c1 Eureka WSO 40.80 N 124.17 W     

047916 c2 Santa Cruz 36.98 N 122.02 W 

046175 c3 Newport Beach 

Harbor 

33.60 N 117.88 W 

046506 v1 Orland 39.75 N 122.20 W 

045385 v2 Marysville 39.15 N 121.60 W 

042294 v3 Davis Exp Farm 38.53 N 121.77 W 

043257 v4 Fresno WSO AP 36.78 N 119.72 W 

043747 v5 Hanford 36.30 N 119.65 W 

049452 v6 Wasco 35.60 N 119.33 W 

044713 m1 Lake Spaulding 39.32 N 120.63 W 

048758 m2 Tahoe City 39.17 N 120.13 W 
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Table 2c.  Airport stations for daily analysis (data obtained from NCDC). 

 

COOP ID Sign Location  Latitude Longitude 

040442 BFL Bakersfield 35.43 N 119.05 W 

040822 BIH Bishop 37.37 N 118.35 W 

045115 CQT Los Angeles USC 34.02 N 118.28 W 

043257 FAT Fresno 36.77 N 119.72 W 

045114 LAX Los Angeles 33.93 N 118.40 W 

045085 LGB Long Beach 33.82 N 118.15 W 

047304 RDD Redding 40.50 N 122.30 W 

047630 SAC Sacramento 38.50 N 121.48 W 

047740 SAN San Diego 32.73 N 117.17 W 

048558 SCK Stockton 37.88 N 121.23 W 

047769 SFO San Francisco 37.62 N 122.38 W 

047946 SMX Santa Maria 34.90 N 120.45W 
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Table 3.  Vector anomaly correlation and RMSE of winds of two analyses and fifteen 

buoy observations during 2000. Better correlation and RMSE of the two are indicated in 

bold. 

 January August 

 Correlation RMSE (m s-1) Correlation RMSE (m s-1) 

 CaRD10 NNR CaRD10 NNR CaRD10 NNR CaRD10 NNR 

b11 N/A N/A N/A N/A 0.65 0.66 1.48 2.25 

b12 N/A N/A N/A N/A 0.68 0.62 1.98 2.54 

b13 0.94 0.88 2.70 3.59 0.72 0.74 2.20 4.28 

b14 0.89 0.82 2.69 3.15 0.78 0.69 1.88 2.50 

b22 0.91 0.85 3.17 3.82 0.64 0.65 2.39 2.26 

b23 0.73 0.78 3.89 3.56 0.69 0.64 1.73 2.11 

b25 0.77 0.61 2.77 4.15 0.58 0.46 1.27 2.12 

b26 0.92 0.86 2.48 3.07 0.83 0.68 1.36 2.50 

b28 N/A N/A N/A N/A 0.73 0.69 2.21 3.36 

b42 0.88 0.78 3.16 4.03 0.69 0.65 1.88 3.13 

b47 0.93 0.92 2.72 2.65 0.78 0.77 1.40 1.48 

b53 0.69 0.61 2.52 3.84 0.54 0.55 2.35 2.58 

b54 0.66 0.65 3.57 4.17 0.67 0.73 2.03 2.23 

b62 0.85 0.84 2.71 2.36 0.68 0.64 1.61 1.98 

b63 0.69 0.66 2.91 3.60 N/A N/A N/A N/A 

All station average 0.82 0.77 2.94 3.50 0.69 0.66 1.84 2.52 
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Table 4.  Vector anomaly correlation and RMSE of winds of two analyses and twelve 

land station observations during 2000. Better correlation and RMSE of the two are 

indicated in bold. 

 January August 

 Correlation RMSE (m s-1) Correlation RMSE (m s-1) 

 CaRD10 NNR CaRD10 NNR CaRD10 NNR CaRD10 NNR 

BFL 0.43 0.36 2.33 2.85 0.53 0.26 1.59 2.03 

BIH 0.49 0.47 3.45 4.12 0.43 0.36 4.00 4.41 

CQT 0.44 0.44 2.29 3.25 0.28 0.16 0.96 1.45 

FAT 0.59 0.47 2.94 3.63 0.41 0.31 1.72 1.96 

LAX 0.54 0.44 2.81 3.58 0.41 0.39 1.62 2.28 

LGB 0.58 0.36 2.63 4.07 0.38 0.27 2.35 2.81 

RDD 0.57 0.64 4.18 5.35 0.52 0.37 1.52 1.87 

SAC 0.64 0.49 3.52 4.41 0.56 0.61 2.34 2.55 

SAN 0.41 0.52 2.94 2.87 0.47 0.44 2.68 2.93 

SCK 0.60 0.48 3.73 4.44 0.55 0.57 2.39 3.23 

SFO 0.78 0.62 4.12 4.25 0.56 0.56 4.53 4.62 

SMX 0.63 0.57 4.01 4.02 0.48 0.42 1.74 1.28 

All station average 0.56 0.49 3.24 3.90 0.46 0.39 2.29 2.62 
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Table 5.  Mean correlation, RMSE, and bias of daily mean temperature and max/min 

temperature of two analyses and twelve land station observations during 2000. Better fit 

of the two is indicated in bold. For the RMSE, mean value is subtracted at each station. 

For the mean bias, temperature is corrected for elevation with lapse rate of 6.5K km-1 and 

absolute values of bias at each station are averaged. 

 

 

  Correlation RMSE (K) Bias (K) 

  CaRD10 NNR CaRD10 NNR CaRD10 NNR 

January 0.77 0.77 1.66 1.73 0.52 0.81 Mean T 

August 0.71 0.67 1.73 1.74 1.51 2.59 

January 0.47 0.45 2.37 2.47 0.50 2.18 Tmax 

August 0.75 0.75 2.45 2.35 2.48 4.72 

January 0.75 0.77 2.47 2.53 2.38 1.98 Tmin 

August 0.49 0.40 2.17 2.25 2.19 1.60 
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Table 6.  Correlation and bias (in mm day-1) between CaRD10 and daily station 

observation of precipitation for 6 selected stations in California in January and August for 

the period 1948-2003. 

 

 January August 

Station Corr. Bias Corr. Bias 

c2 0.68 1.00 0.50    0.08 

c3 0.66 1.33 0.12   -0.02

v1 0.60 3.54 0.33  0.05 

v3 0.60 2.43 0.14    0.06 

v6 0.43 2.01 0.03  0.01 

m1 0.84 1.04 0.40    0.10 
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Table 7.  Correlation of monthly average of daily mean temperature, daily max 

temperature, and precipitation with observation for the period 1948-96. All station 

(Figure 6) values are averaged. 

 

 January August 

 
Daily Mean 

Temperature 

Daily Max 

Temperature 
Precipitation 

Daily Mean 

Temperature 

Daily Max 

Temperature 
Precipitation 

CaRD10 0.84 0.76 0.69 0.68 0.69 0.57 

NNR 0.78 0.65 0.77 0.74 0.73 0.64 
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Table 8.  Comparison of 1950-96 trend in monthly mean near surface temperature (K 

decade-1) between observation and CaRD10. Statistically significant (95% confidence) 

positive/negative trend is indicated in bold. 

 

January August  Station 

Obs. CaRD10 Obs. CaRD10 

c1 +0.04 +0.02 +0.04 -0.04 

c2 +0.05 +0.02 +0.03 -0.04 

Coast 

c3 +0.07 +0.02 +0.05 -0.03 

v1 +0.04 +0.00 +0.00 -0.04 

v2 +0.04 +0.00 +0.02 -0.04 

v3 +0.01 -0.00 +0.01 -0.03 

v4 +0.02 +0.01 +0.05 -0.05 

v5 +0.02 -0.00 +0.01 -0.05 

Valley 

v6 +0.02 -0.00 +0.03 -0.05 

m1 +0.04 +0.06 +0.04 +0.00 Mountain 

m2 +0.05 +0.02 +0.06 +0.25 
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Table 9.  Precipitation skill scores of CaRD10 in January 1998 with respect to gridded 

Higgins precipitation analysis (Higgins et al, 2000). 

 

Threshold 

(mm day-1) Threat score Bias score 

0.05 0.19 0.96

0.1 0.20 1.04

0.2 0.22 1.09

0.5 0.27 1.13

1 0.30 1.14

2 0.32 1.15

5 0.30 1.27

10 0.24 1.65
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Figure 1.  CaRD10 domain, surface elevation (m), and observation station locations used 
in CaRD10 validation.  Buoy observation stations are indicated by blue circles (names 
begin with “b,” courtesy of Steve Taylor).  The USHCN stations are indicated by black 
squares (names begin with “c,” ”v,” or ”m”) and the NCDC stations are indicated by red 
“cross-hairs” (three-letter abbreviations). 



 47

 
 

 
 
Figure 2.  Comparison of daily temperature range for January (top panels) and July 
(bottom panels) 1996.  Left panels are observation (courtesy of Mary Tyree), and right 
panels are CaRD10. 
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Figure 3.  Comparison of monthly mean diurnal variation of near surface winds for the 
average of 2000 and 2001 at buoy station b25. Mean daily wind is subtracted and only 
anomaly is plotted. Solid line is buoy observation and dashed line is CaRD10. X axis is 
time (UTC) and Y axis is wind speed (m s-1). 
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Figure 4. Validation of composite diurnal variation of wind speed and direction at 
Piedras Blancas (35.7N, 121.3W) for the period June 24 to July 21, 1996. Left panel is 
observation (from Fig. 9 in Ralph et al. (2000); courtesy of Paul Neiman). Y axis is in 
meters. Right panel is CaRD10. Y axis is in hPa. Contour is wind speed in m s-1. Half 
barb = 2.5 m s-1 and full barb=5.0 m s-1.   
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Figure 5.  An example of the Catalina Eddy as it appeared in the CaRD10 at 1500UTC, 
May 22, 1984. Shades and arrows indicate winds at 10m above surface (m s-1). 
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Figure 6.  Correlation of monthly average of a) daily mean temperature and b) 
precipitation with observation for the period 1948-96. 
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Figure 7. Variation of correlation of monthly mean temperature with observation for the 
period 1948-96 at coastal (c1 to c3), Central Valley (v1 to v6) and mountain (m1 and m2) 
stations. 
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Figure 8.  1950-96 linear trend of 2-meter temperature (K year-1) for January (left) and 
July (right) in CaRD10. 
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Figure 9.  Seasonal variation of monthly averaged precipitation (mm day-1)in CaRD10 at 
11 selected observation locations.  1950-74 climatology and 1975-96 climatology are 
plotted separately.  
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Figure 10.  January mean precipitation comparison of CaRD10 and NNR against PRISM 
analysis for the 1950-97 period. Bias a) in CaRD10 and b) in NNR.  Unit mm day-1. 
Temporal correlations c) in CaRD10 and d) in NNR. 
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Figure 11.  Comparison of the 1950-97 trend in January mean precipitation rate. a) 
PRISM and b) CaRD10.  Unit is in mm day-1 decade-1. 
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