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Abstract. 

This paper presents the new Experimental Climate Prediction Center (ECPC) Coupled 

Prediction Model (ECPM). The ECPM includes the Jet Propulsion Laboratory (JPL) version of 

the Massachusetts Institute of Technology (MIT) ocean model coupled to the ECPC version of 

the National Centers for Environmental Research (NCEP) Atmospheric Global Spectral Model 

(GSM). The adjoint and forward versions of the MIT model forced with the NCEP atmospheric 

analyses are routinely used at JPL for ocean state assimilation. An earlier version of the GSM 

was used for the NCEP/DOE Reanalysis-2 project and for operational seasonal forecasts at 

NCEP. 

The ECPM climatology and internal variability derived from a 56-year long coupled 

integration are compared to the observations and reanalysis data. Though the ECPM exhibits 

climatological biases, these biases are relatively small and comparable to the systematic errors 

produced by other well known coupled models, including the recent NCEP Climate Forecast 

System (CFS). 

 The internal variability of the model, especially the tropical variability, resembles 

observations. The spectra of the simulated sea surface temperature, averaged over Nino3.4 

region, exhibits maxima at frequencies corresponding to 3-6 year periods, indicating that the 

model simulates ENSO variability reasonably well. The model also produces 500-hPa height 

responses to tropical variability that are quantitatively similar to the observations  

The skill of the ECPM in predicting 1994- 2006 SST anomalies over the NINO3.4 region 

is shown to be comparable to other coupled models.  These retrospective forecasts were used 

for deriving a model climatology for real time seasonal forecasts that are currently produced and 

displayed at ECPC. 
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1. Introduction 

Dynamical seasonal forecasts with time scales ranging from a few months to a year are 

now commonly performed at operational weather centers around the world. Although the 

accuracy of the forecasts are still marginal in comparison to statistical methods (Oldenborgh et al. 

2005; Saha et al. 2006) continued efforts to improve the numerical modeling systems should 

eventually  provide dynamical seasonal forecast products as useful as current dynamical 

forecasts for short and medium range predictions.  In addition, unlike statistical methods, a 

dynamical forecast model is capable of providing other valuable data which can be used to 

understand the evolution of the atmosphere and ocean, and can thus further improve future 

seasonal prediction itself. 

There are currently two kinds of dynamical seasonal forecasting methodologies.  One 

forces an atmospheric model with independently predicted sea surface temperature anomalies 

(SSTAs).  Predicted SSTAs are produced either by purely statistical methods (i.e. persisted 

anomalies) or by combined statistical and ocean-atmosphere coupled system forecasts.  This 

method is called a “two-tier” forecast, and is used widely, since it is easier to implement and 

simpler to make reasonable forecast (see for example, Roads et al. 2001; Kanamitsu et al. 2002; 

Straus et al. 2003).   The weakness of this method is that the atmospheric model is forced by 

SST but the ocean is not subsequently affected by the atmosphere.  In the real world, the SST is 

determined by the mutual interaction between the ocean and atmosphere, and the “two-tier” 

models’ lack of interaction may result in unphysical behaviors. For example, in regions where 

SST anomalies are driven by the atmosphere (like the central North Pacific and tropical monsoon 

regions) there could be huge discrepancies between simulated and observed direction of the air-

sea flux exchange in two-tier system. As was shown in Wu et al. (2005), the inclusion of 

coupling increases the skill of the simulation of the air-sea interaction, which then leads to a 
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better prediction of monsoon activity 

The second method is to use a dynamically coupled ocean-atmosphere system, the “one-

tier” forecast.  Initially a statistical or empirical correction (flux adjustment) was frequently 

used at the interface between the ocean and atmospheric models but recent improvements in both 

atmospheric and ocean models have now made it possible to avoid such corrections.  Some 

form of statistical correction may still be needed for the final model output, but the forecast 

system itself is free from statistical corrections and thus the state of the ocean, including SST, 

and the atmosphere are dynamically and physically consistent and not overly artificially 

constrained.  

The factors that greatly influence the skill of the seasonal forecast (in addition to the 

accuracy of the atmospheric and ocean models, and their coupling method) are the initial 

conditions.  For an atmospheric forecast, the initial conditions are not crucial for time leads 

beyond about a month, since long-term forecasts are boundary forcing problems (e. g. Reichler 

and Roads 2003). However, certain atmospheric initial conditions, including those associated 

with anomalous stratosphere states, may still be important (Baldwin and Dunkerton 1999; 

Reichler and Roads 2004, 2005a,b). Oceanic initial conditions are certainly critical, since the 

seasonal ocean forecast is an initial value problem. In fact, in some cases ocean forecasts out to 

at least a year are strongly dependent on how accurate the ocean initial conditions were.  In 

addition, the ocean initial conditions need to be “balanced” with the ocean and atmospheric 

models, otherwise, the integration goes through an initial adjustment, which contaminates the 

initial ocean condition and makes it difficult to use the forecast during the adjustment period.  

This adjustment period frequently exceeds several months, nearly the entire duration of the 

seasonal forecast (e. g. Rosati et al, 1997).  In this regard, a data assimilation system for the 

ocean is critical for a coupled model seasonal forecast; just like atmospheric data assimilation is 
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essential for short and medium range atmospheric forecasts.  There are additional requirements 

for land and ocean sea ice initial conditions, but we will not delve into this further since our 

focus here is on ocean atmosphere interactions. 

When we actually perform a real time coupled forecast, the requirement of accurate 

ocean initial conditions places severe limits on the choice of ocean model, since the ocean model 

needs to have its own data assimilation and in addition, the ocean analysis system needs to be 

running in near real time.  Variational data assimilation usually involves developing an adjoint 

of the ocean model, which requires considerable expertise and time to develop.  The most 

widely used ocean model with a data assimilation component is the Geophysical Fluid Dynamics 

Laboratory (GFDL) Modular Ocean Model (MOM, see Derber and Rosati 1989; Carton et al. 

2000,).  This ocean data assimilation has now been running in real time at NCEP (Ji et al. 1995; 

Ji et al. 1998) for more than 10 years.  MOM is very portable and easy to adopt, thus, most 

coupled models developed and used in U.S. utilize the GFDL ocean model, with a wide variety 

of atmospheric models coupled to it.  Unfortunately, this current limited ocean analysis and 

model choice may severely limit the true scope of multi-model ensemble coupled model 

forecasts.   At least the coupled forecast system at NASA/Global Modeling and Assimilation 

Office (GMAO), developed by Schopf and Loughe (1995), does provide an independent ocean 

model and analysis.  

In this paper, we present a new seasonal forecast system, which utilizes an ocean model 

developed independently from GFDL and NASA/GMAO, coupled to our version of the NCEP 

seasonal forecast model.  The oceanic component of this forecast system is the MIT model that 

comes with an advanced 4-D variational data assimilation system. Though the MIT GCM was 

primarily developed for research, ocean assimilation has been run quasi-operationally at JPL for 

the last several years.  We will demonstrate that our new 1-tier Experimental Climate Prediction 
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Center (ECPC) Coupled Prediction Model (ECPM), without flux adjustment, produces skillful 

seasonal forecasts, which are comparable to other coupled forecast systems. 

One rather important component of the seasonal forecast, missing in this study, needs to 

be mentioned here.  A seasonal forecast is itself probabilistic in nature, particularly the 

atmospheric part, but also the coupled ocean component.  The natural variability that is 

essentially noise in the forecast has to be filtered out by computing ensemble averages.  A 

probability density function can also be obtained from ensemble forecasting, although its usage 

is still limited.  Unfortunately, we did not have sufficient computer resources to perform large 

ensemble predictions in this initial study.  All the forecasts presented here consist of a single 

member deterministic forecast. Therefore, we concentrate here on the average error components 

of atmosphere and ocean on broad scales (e. g. Moore and Kleeman, 1996). 

This paper is structured as follows.  After first describing the coupled modeling system 

in Section 2, we will describe the main features of a long continuous coupled model integration 

starting with consistent oceanic and atmospheric conditions in Section 3.  We then present 

many coupled model retrospective forecasts starting at different months in Section 4.   We will 

then examine how the skill of the seasonal forecast depends on the initial conditions and forecast 

lead-time in Section 5. In the same section we will study the importance of the coupling for 

improving the skill of long lead climate prediction by comparing coupled and uncoupled runs.  

Section 6 concludes the paper. 

 

2. Models and Experiments 

ECPM consists of the ECPC version of the NCEP Global Spectral Model (GSM) and the 

JPL version of the MIT ocean model that has been used for an ocean analysis each month 

beginning in 1993. The coupling is performed every 24 hours. The atmospheric model net heat, 
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fresh water, short and long wave radiation fluxes together with wind stresses are passed to the 

ocean component, while the atmosphere is forced with the SSTs obtained from the oceanic 

module. No flux adjustment is used in the coupled system. A difference between the ECPC 

coupling procedure and the one utilized in the NCEP CFS is that the numerical interaction 

between the atmosphere and ocean is global, and not confined to climatology at higher latitudes. 

The only climatology that is currently used in the model is the sea ice extent. We are planning to 

eventually include the correct description of the internal ice dynamics that will then allow for 

more realistic heat and fresh water transports and better calculation of air-sea fluxes at high 

latitudes. Further details about the models are provided below. 

 

2.1 MIT OGCM 

The oceanic component of the ECPM is the JPL MIT model, which has 1°x1° horizontal 

resolution with a telescoping (1/3°) resolution near the equator. The ocean model also has fine 

vertical resolution with 46 vertical levels. The vertical depth goes down to 5800 m, with the first 

23 levels located in the upper 400 meters. The model is based on the primitive equations on a 

sphere under the Boussinesq approximation. There are prognostic equations for horizontal 

velocity, heat and salt, which are integrated forward in time on a staggered grid. At each time 

step the internal pressure is calculated from the hydrostatic relation, and the vertical velocity is 

diagnosed from the continuity equation. Spatial coordinates are longitude, latitude, and height. A 

detailed description of the model is provided in Marshall et al. (1997a, 1997b). We are using the 

version of the model with an implicit free surface. A full surface non-local K-Profile 

Parameterization (KPP) of vertical mixing throughout a water column is also used, and is 

described in detail in Large et al. (1994). The KPP model of vertical mixing parameterization is 

based on parameters derived from observational data; thus it captures important physics during 
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the annual cycle for a wide range of dynamical regimes and at the same time does not 

significantly increase computational time. A convective adjustment is used to remove 

gravitational instabilities underneath the surface mixed layer.  

Finite volume techniques are employed yielding an intuitive discretization and support 

for the treatment of irregular geometries with orthogonal curvilinear grids. The algorithm can 

conveniently exploit massively parallel computers and has a domain decomposition, which 

allocates vertical columns of ocean to each processing unit. The model can arbitrarily handle 

complex geometry and is efficient and scalable.  A ``pressure correction'' method is used which 

is solved as a Poisson equation for the pressure field with Neumann boundary conditions in a 

geometry as complicated as that of the ocean basins. The pressure field is separated into surface, 

hydrostatic, and non-hydrostatic components. A preconditioned conjugate-gradient iteration is 

used to invert symmetric elliptic operators in both two and three dimensions. Physically 

motivated pre-conditioners are designed, which are efficient at reducing computation and 

minimizing communication between processors.    

The assimilation (Kalman filter with Green's function tuned parameters) and forward 

simulation versions of the MIT model forced with NCEP reanalysis data are routinely used at 

JPL for ocean state assimilation (Fukumori 2002). In order to produce a computationally 

efficient data assimilation, JPL adopted a hierarchal assimilation system. First, a series of 

Green’s function are calculated and used for the correction of robust biases in the mean state; 

second a Kalman filter and smoother produces near real-time analysis of the time-dependent 

state. The system assimilates observed sea level and temperature profiles. Near real-time 

analyses are available at the JPL data server (http://ecco.jpl.nasa.gov/external) as ten-day 

averages. 
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The ocean analysis has been used in numerous studies of ocean variability as well as in various 

geodetic studies. These studies have demonstrated the accuracy of the JPL data assimilation 

system (see for instance Dickey et al. 2002; Stammer et al. 2002) and its applicability for a wide 

range of climate variability studies. 

 

2.2 Global Spectral Model 

The atmospheric component of the ECPM is the ECPC version of the NCEP GSM 

(Kanamitsu et al. 2003). An earlier version of the GSM is being used for operational seasonal 

forecast at NCEP and its performance was documented in Kanamitsu et al. (2003). (An upgraded 

version of the model is used as the atmospheric component in the current NCEP CFS.) Two-tier 

ensemble forecasts of the ECPC GSM are routinely being provided to the International Research 

Institute (IRI) as part of their multi-model seasonal forecast ensemble. Robertson et al. (2004) 

showed that the addition of these two-tier ECPC forecasts increased the IRI multi-model forecast 

skill, especially over Africa. 

The GSM utilizes spherical harmonics as the basis functions and has an efficient   

transformation to a Gaussian grid for calculation of nonlinear terms and physics. Horizontal 

resolution is T62 (~200 Km) but the number of grid points is reduced in higher latitudes to save 

computer time (Juang, 2004). There are 28 vertical sigma (Phillips 1959) coordinate levels. The 

vertical domain is from the earth's surface (sigma=1) to the top of the atmosphere (sigma=0). 

This domain is divided into 28 layers with enhanced resolution near the bottom and the top of the 

model. Global and regional versions of the model are also used for experimental sub-seasonal to 

seasonal climate predictions at ECPC (see Roads, 2004). The main time integration scheme is 

leapfrog scheme for nonlinear advection terms, and semi-implicit scheme for gravity waves. An 

Asselin (1972) time filter is used to reduce computational modes.  
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Atmospheric model dynamics are based on the conservation of mass, momentum, energy 

and moisture. In order to take advantage of the spectral technique in the horizontal, the 

momentum equation is replaced by the vorticity and divergence equations (Bourke, 1974).  

Thus the model is basically described as a set of primitive equations with vorticity, divergence, 

logarithm of surface pressure, specific humidity and virtual temperature as dependent variables. 

Scale-selective, second-order horizontal diffusion (Leith, 1971) is applied to vorticity, 

divergence, and virtual temperature. The diffusion of temperature is performed on quasi-constant 

pressure surfaces (Kanamitsu et al. 1991). Implicit integration with a special time filter (Kalnay 

and Kanamitsu, 1988) is used for vertical diffusion. In order to incorporate physical tendencies 

into the semi-implicit integration scheme, a special adjustment scheme is performed (Kanamitsu 

et al., 1991). 

The physics are written in the form of an adjustment and executed in sequence. The 

physical processes parameterizations originated from NCEP-DOE reanalysis (R-2) (see 

Kanamitsu et al. 2002). These parameterizations include long and short wave radiation (Chou 

and Suarez 1994; Chou and Lee 1996) interacting with clouds, which are diagnosed from relative 

humidity, convective activity (Slingo 1987),  Relaxed Arakawa Schubert convection scheme 

(RAS; Moorthi and Suarez 1992), turbulent mixing and heat and moisture exchanges at the 

earth’s interfaces based on Monin Obukhof similarity theory, non-local vertical diffusion scheme 

in the planetary boundary layer (Hong and Pan 1996), Oregon State University Land model (Pan 

and Mahrt 1987), shallow convection (Tiedtke 1983), gravity wave drag (Alpert et al. 1988) and 

use of smoothed mean orography .  

 

3. Model Climatology 

As was noted above, the ability of the coupled model to reproduce climatology and 
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internal variability is a prerequisite for producing skillful forecasts. An investigation of the 

deviation between model and observed climatology might be used as one of the strategies for 

making subsequent improvements. In this section we document the ECPM climatology and 

deviation from observations, and show that the biases are small and the internal variability is 

realistic. No artificial flux coupling has therefore been needed. 

 

3.1 Atmospheric Temperature and Winds  

Figure 1 shows height-latitude cross-sections of the zonal mean December-January-

February (upper left panel) and June-July-August (upper right panel ) temperature profiles 

obtained from the 56 years of ECPM integration  and the corresponding model’s biases 

expressed as the difference between the coupled model climatology and the 56 year (1950-2005) 

R-2 climatology.  During the wintertime (lower left panel), the ECPM produces a cold bias in 

the Northern hemisphere. Warm bias in high latitudes, especially in the Southern hemisphere, 

accompanies this cold bias. The cold bias in the troposphere has a pronounced maximum at 

around 700-hPa and might be caused by deficiency in   cloud and convection parameterizations. 

The model’s lower stratosphere is colder by around 5º K. These biases are similar to the ones 

produced by the stand-alone atmospheric model in the AMIP type integration (e.g. Martin et al, 

2006), therefore they should be explained by the atmospheric behavior, and not by the coupled 

processes. The difference in the temperature distribution during boreal summer, JJA is shown in 

the lower right panel and is qualitatively the same. The warmer near-surface bias shifts towards 

the equator in the Northern Hemisphere, and the tropical mid-troposphere cold biases are less 

pronounced.   

The temperature biases exhibited in the middle and upper troposphere are somewhat 

similar to the corresponding biases exhibited by the GFDL Global Coupled Model (GFDL CM2; 
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Delworth et al. 2006). However, the GFDL CM2 exhibits a pronounced warm bias in the 

equatorial and tropical parts of the lower troposphere.  The ECPM produces colder than 

observed temperatures in the whole bulk of the tropical troposphere. Overall,  the magnitude of 

the atmospheric temperature  errors is larger than the atmospheric model run forced by 

observed SST (Kanamitsu et al. 2002), reflecting the systematic error in the simulation of SST.  

Figure 2 exhibits the systematic error in simulation of climatological SST. In comparison 

to the NCEP optimum interpolation (OI) SST, the ECPM produced SST 0.5 º – 1º K colder over 

most of the tropics. On the other hand, the ECPM produces a warmer SST over northern oceans, 

especially over western and central North Pacific during the summer time.  The central Pacific 

equatorial cold bias is also  produced by a number of coupled models including the UCLA 

global atmospheric model coupled to the GFDL oceanic model (Robertson et al. 1995), GFDL 

CM2 (Delworth et al. 2006), FSU climate model (Shin et al. 2005) and Hadley Center Climate 

Model HadGEM1 (Johns et al. 2006). 

The systematic errors in the precipitation field are shown in Figure 3. The CPC Merged 

Analysis of Precipitation (CMAP) for 1979-2004 was used for the observational data. The 

differences between the ECPM and CMAP are shown in the second from the top row. The 

corresponding differences between R-2 and CMAP precipitation are shown in the bottom row. 

The ECPM wintertime Inter Tropical Convergence Zone (ITCZ), shown in the upper panel of the 

left column of Figure 4, reveals two zonal bands of maximum precipitation (the so-called double 

ITCZ feature) mainly in the tropical western Pacific. ECPM extends the wintertime double ITCZ 

feature into the central Pacific as marked by excessive precipitation around 5º N in the central 

tropical Pacific (on the second from the top left panel of Figure 3). However, as opposed to a 

number of coupled model climatologies, the double ITCZ feature is not extended all the way into 

the eastern Pacific. During the summertime (right column on Figure 3), the model 
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underestimates the western equatorial Pacific precipitation (second from the top right panel), and 

thus separates the nearly uniform band of maximum precipitation, thus creating the double ITCZ 

feature in the western Pacific. Comparison with the precipitation from R-2 (third from the top 

row) indicates that the coupled model produces more realistic wintertime climatology over the 

northern oceans, than the R-2. This is especially evident over the Kuroshio-Oyashio Extension 

(KOE) region (second from the top and bottom left panels), where the R-2 DJF precipitation 

pattern reveals an excessive amount of precipitation. This bias is reduced in the coupled model. 

It should be noted that the double ITCZ feature is present in almost all of the current coupled 

models (e.g. Delworth at al, 2006, Johns et al, 2006). As was noted in Johns et al. (2006), this 

phenomenon may be linked to the equatorial cold bias exhibited by many coupled models. The 

precipitation biases in the ECPM are comparable to the corresponding biases in GFDL’s coupled 

model (e.g. Figure 17 in Delworth et al, 2006).  

The corresponding ECPM zonally averaged zonal winds (not shown here) exhibit biases 

comparable with the corresponding biases in the GFDL CM2, both for AMIP-type simulation 

(Anderson et al. 2004) and coupled (Delworth et al. 2006) integrations. The largest discrepancies 

from the observations (around 10-15 m s-1 ) occur in  the lower stratosphere. These biases are 

associated with the cold biases in the zonal mean temperature in accordance with the thermal 

wind equation. In the troposphere, the differences are much smaller,  

The error in the Northern Hemisphere zonal wind extends to the surface and is accompanied by a 

dipole pattern in the sea level pressure bias pattern that consists of an increased  surface 

cyclonic activities in high latitudes, and increased  anti-cyclonic activities in mid-latitudes.   

The model produces a stationary planetary wave pattern that is similar to the one obtained 

from R-2 and simulated by GFDL’s coupled models. (i.e. Figure 23 Delworth et al, 2006). 

Similar to GFDL’s CM2 global coupled climate models, the ECPM produces weaker troughs 
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over North Pacific and North-eastern parts of North America, and a weaker ridge over west coast 

of the United states during boreal winter.  

Summarizing, both winter- and summer-time ECPM circulations exhibit systematic 

biases in comparison to R-2. However, these biases are comparable with the biases produced by 

other climate models (Anderson et al. 2004; Saha et al. 2006; Delworth et al. 2006).  

 

3.2 Ocean Climatology. 

One of the most important variables indicating the potential influence of the ocean on the 

atmosphere is the integrated heat content from the surface to 400 m depth (see for instance 

McPhaden 2004) since it can be considered to be a predictor of ENSO development. Therefore, 

the difference between the model and observed oceanic heat content climatology is an indicator 

of how good the ocean simulation is. Figure 4 exhibits the annual mean 400 m heat content 

obtained from the coupled integration (upper row). Difference between the JPL assimilated data 

and the climatology from the ECPM long-run is shown in the lower panel. The maximum 

absolute difference between the coupled model run and the assimilated data in the tropics is less 

than 1.5x109 J m-2 which is around 10% of the seasonal mean value.  The most pronounced 

differences are seen over the eastern part of the equatorial Pacific and at around 10º North in the 

Western Pacific. This is a typical bias pattern for coupled model simulations, and is associated 

with the ITCZ location. ECPM exhibits a positive bias over the KOE region in the western North 

Pacific.  Again, errors of the same size and sign are typical of other coupled models (e.g. 

Megann 2005).  The possible causes of these errors will be discussed later in Section 4.3. 

A depth-longitude temperature cross-section along the equator is shown in Figure 5. 

Again, as for the 400 m heat content, the upper row shows ECPM annual mean simulated data, 

and the lower row shows the difference between the JPL analysis and the climatology of the 
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coupled model. The greatest difference can be seen in the western Pacific in the barrier layer 

below the thermocline. In the eastern Pacific, the model tends to produce deeper thermocline. It 

should be mentioned, that the absolute values of the discrepancies between the model and 

assimilated data are small in comparison to the climatology (less than 5% of the absolute values).  

These biases are qualitatively similar to the ones produced by GFDL’s CM2 Global Coupled 

Climate Models (Wittenberg et al. 2006) and to the biases produced by the Green’s function 

estimate of ocean temperature data (Menemenlis et al. 2005).  

To summarize, the ECPM climatology exhibits biases in comparison to observations. 

However, the amplitudes of these biases are much smaller than the mean values, and the 

discrepancies are comparable or smaller than the systematic errors produced by most coupled 

models used for climate prediction (e.g. Sara et al. 2006; Gordon et al. 2000). 

 

4. Internal Variability 

In the previous section we documented the mean model state and the deviations from 

observation. Though correcting these systematic errors could perhaps be made by attempting to 

tune the model, a more important question is the extent to which the model can reproduce local 

observed variability as well as remote atmospheric response of various variables. In that regard, 

the tropical El Nino (ENSO) signal is the most important global signal observed in climate 

variables. We therefore first checked the ability of the model to produce realistic SST variability 

in the tropical region.  

 

4.1 Seasonal Cycle in the Tropical Pacific.  

Li and Philander, 1996 demonstrated the importance of correct simulations of the annual 

cycle in the tropical Pacific and it’s connection to the mean state. Therefore, the ECPM’s ability 
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to correctly simulate annual variability and phase locking will be studied in this section. 

The model’s annual cycle (Figure 6, lower left panel) exhibits a semiannual cycle in the 

western equatorial Pacific, and a westward propagating annual signal in the eastern Pacific. This  

annual variability is very close to both the HADISST data shown in Jungclaus et. al, (2006) and 

NCEP OI SSTs shown in Wittenberg et. al, (2006).  ECPM outperforms ECHAM5/MPI-OM in 

reproducing the phase and strength of the equatorial Pacific SSTs. However, similar to GFDL’s 

CM2 global climate models, the ECPM produces stronger than observed annual cycle (see 

Wittenber et al, 2006, Figure 11a). The corresponding annual mean pattern (upper left panel) is 

quantitatively in close agreement with observations. There are pronounced warm pool and cold 

tongue, although the ECPM produces a cold bias over the cold tongue region.  

The upper right panel shows the annual mean zonal wind stress. The wind stress pattern 

is similar to ECMWF reanalysis ERA-40 data (see Wittenberg et al, 2006). The annual mean 

pattern exhibits easterlies maxima at around 20ºN and 150º-180ºW, and weak westerlies at the 

equatorial western and eastern boundaries. The lower right panel shows the annual cycle of the 

zonal wind stress averaged over 2ºS-2ºN. The model captures the westward propagation of the 

east Pacific signal, as well as the observed relaxation of the trade winds during the spring time. 

The model reproduces correctly the summertime direction of the wind stress in the eastern 

Pacific. The model also exhibits realistic seasonality in the interannual variability of ENSO 

measures by the interannual variance of NINO3.4 index (not shown here). The simulated 

interannual variance peaks during late autumn and winter, similar to observations.  

Another very important phase lock feature is exhibited in the annual cycle of the 

correlation between NINO3 SST anomalies and Indian Ocean Dipole (IOD). Figure 7 shows the 

correlation between different indices associated with IOD and NINO3.4 index. The IOD index is 

based on the difference in SST between the west (10ºS-10ºN, 50º-70ºE) and southeast (5ºS-0º, 
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90º-110ºE) tropical Indian Ocean. The ENSO signal propagates (via the atmosphere) into the 

Indian Ocean and results in the substantial correlation between NINO3.4 and western node of the 

Indian dipole. The amplitudes and phases of the correlations between IOD and NINO3.4 are very 

similar to observations (e.g. see Figure 19 in Johns et al, 2006). In contrast to the HADGEM1, 

the ECPM produces a more realistic phase lock between IOD and NINO3.4   

4.2 Interannual Variaility.  

As was noted in a vast number of studies (e.g. Delworth et al, 2006) the standard 

deviation of the annual-mean SST can be considered to be one of the  the robust measures of 

the model internal variability. Figure 8 shows the ECPM and NCEP OI SST inter-annual 

standard deviation. The model SST include 56 years of simulations. The NCEP OI SST was 

taken for the period of 1950 – 2005. Linear trend was removed from both datasets. The model 

variability pattern is similar to the observation in the eastern and central tropical Pacific, as well 

as over the mid-latitude Pacific. As in the case with some other coupled models, e.g. GFDL’s 

CM2 global climate models (Delworth et al, 2006), ECPM exaggerates SST variability, 

especially in the tropics and over the Oyashio extension region.  

To further document the interannual variability in the model, a spectral analysis of the 56 

years of the simulated wintertime SST anomalies averaged over NINO3.4 region (5˚N-5˚S, 

170˚W-120˚W) (Figure 9) was compared to the spectra of the wintertime NCEP OISST 

(Reynolds and Smith 1994) from 1950 to 2005. It should be noted that the spectral analysis was 

performed on a wintertime data due to the pronounced phase lock discussed in the previous 

section. The ECPM spectra exhibits statistically significant maxima peaks in the 2 to 6-year 

period interval, which are comparable to analogous peaks obtained from observed NCEP SSTs. 

These peaks correspond to quasi-periodic ENSO events.  

Figure 10 shows wintertime SSTAs averaged over NINO3.4 region. ECPM exhibits 
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slightly stronger amplitude of variability. This difference is further confirmed by a comparison 

between the simulated (lower left panel, Figure 10) and observed (lower right panel, Figure 10) 

frequency distributions of the NINO 3.4 SST anomalies. The probability of the simulated El 

Nino events is slightly greater than the probability of La Nina events, the amplitude of the warm 

extreme events in the model is also slightly larger than of the cold events. This is opposite to the 

simulations by HadGEM1 (Johns et al. 2006) that produces weaker than observed variability for 

the positive- phase SST anomalies. 

4.3 ENSO Evolution 

The evolution of ENSO can be expressed by constructing the maps of equatorial SST, 

wind stress, upper ocean current and temperature lag-regressed onto the NINO3 index (SSTA 

averaged over 5˚S-5˚N and 150˚-90˚W). Figure 11 shows the ECPM lag regressions onto NINO3 

index normalized by one standard deviation. Positive time corresponds to NINO3 leading the 

variable.   All the fields were averaged over 2˚N-2˚S. SSTAs are zonally uniform and nearly 

steady from 80˚W to 130˚E. The SSTAs peak approximately 12 months after they start to 

develop in the western Pacific. The SSTAs over the western-most Pacific are negative at the time 

of the nearly basin-wide peak. These cold anomalies propagate eastward reaching American 

coast in about 12 months. This behavior is very similar to the observed ER.v2 SST anomalies 

presented by Wittenberg et al. (2006, Figure 23).  

The equatorial zonal wind stress anomalies propagate eastward. However, in comparison 

to the ECMWF Reanalysis ERA-40 zonal wind stress anomalies (see Wittenberg et al., 2006), 

there is a steady westerly anomaly pattern over the western part of the equatorial Pacific, up to 

around 130˚E. This steady pattern is produced by GFDLs coupled models as well and is due to 

the lack of stochastic noise in the atmospheric forcing (B. Kirtman, personal communications). 

As in the observations, the peak in the wind stress anomalies over the central Pacific is 
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preceeded by westerlies over the western Pacific nearly 12 months before the peak. The peak 

occurs over central Pacific a couple months before the peak in SSTAs. In the ECPM, the 

easterlies re-appear in the west and central Pacific in 9 months, which is different from the 

observations that show eastward propagation of easterlies. It should be noted, that the GFDL 

coupled models do not correctly reproduce this propagation as well. 

As in the GFDL/ARCs ocean analysis (Wittenber at al., 2006), ECPM reproduces the 

eastward propagation of the upper ocean heat content that peaks at the time of the SSTAs peak. 

However there is a difference in the propagation of the cold upper ocean temperature anomalies 

from the western Pacific. As is the case with the wind stress anomalies, the cold ocean anomalies 

re-appear in the central and eastern Pacific, instead of propagating eastward.  

The upper ocean eastward zonal currents peak in the eastern-most Pacific 3-12 months 

before the SSTAs peak. The western currents then start to develop around the ENSO peak. The 

pattern of westward currents encompasses nearly the whole basin and is centered over the central 

Pacific. These currents reach maxima 6-9 months after the SSTAs peak. This development is 

similar to the evolution of GFDL currents (e.g. Wittenberg et al, 2006). Since the zonal current 

advection of the SST gradient is crucial in transition from El to La Nino, the qualitative 

similarity between ECPM simulations of the ocean currents and observations is crucial for 

correct ENSO simulations.  

To summarize, the ECPM simulation of ENSO mechanism is qualitatively similar to the 

observations. The differences are not worse than the ones produced by other (e.g. GFDL) 

coupled models. We are planning to eventually perform more detailed studies on the cause of 

these discrepancies. 

 4.4 ENSO Teleconnection Patterns 

  As was noted in the variety of studies, the climate system has a global response to the 
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ENSO forcing. These teleconnection patterns have been extensively studied and documented (e.g. 

Wallace and Gutzler 1981; Sardeshmukh et al. 2000). The spatial pattern of the SST response is 

shown in Figure 12. The correlation map between NINO3.4 index and SSTAs over the Pacific 

produced by the ECPM is qualitatively similar to the observed NCEP OISST map. The 

meridional straucture and strength simulated by the model over the Pacific are in good agreement 

with observations. The weaker signals over Indian and Atlantic oceans are also similar to the 

observations. 

We also studied the skill of ECPM to produce an ENSO related remote atmospheric 

response by regressing 500-hPa height (Z500) anomalies onto the time series of SST anomalies 

averaged over NINO3.4 index. The response in Z500 to one standard deviation of the ENSO 

signal in the ECPM (not shown here) over mid-latitudes bear similarities with the analogous 

response in R-2 data, indicating that our coupled model reproduces, reasonably well, the 

atmospheric tropics-midlatitude bridge.  

Another test of the skill of a coupled model is its ability to correctly simulate the 

relationship between SST and heat flux anomalies, especially over North Pacific, and in the 

tropical monsoon regions, where the atmosphere significantly alters SST variability. We 

investigated the local correlation between SST anomalies and latent heat fluxes. Figure 13 

compares the correlation between SST and latent heat anomalies for ECPM (top panel) and for 

the AMIP run with the same atmospheric component. This figure can be compared with the 

Center for Ocean Land Atmosphere (COLA) coupled and stand alone models (Figure 7 from Wu 

at al. 2006). In comparison to the stand alone SST forced atmospheric integration, the correlation 

between latent heat flux anomalies and SST anomalies, both the ECPCM and COLA coupled 

model have negative correlations in the tropical Pacific, and equatorial Indian oceans indicating, 

that SST anomalies in this regions are forced by the atmosphere. Although the correlations over 
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the western part of the Pacific warm pool in the coupled model are negative, the region of 

positive correlations still extends too much to the west in comparison to observations (see map of 

point-wise correlations derived from GSTTF2 latent heat flux anomalies and observed SST 

anomalies shown in  Figure 6 from Wu at al. 2006).  Similar errors occur in the UCLA 

coupled atmosphere-ocean general circulation model (Yu and Mechoso 1999).However, in 

comparison to uncoupled run, the introduction of the coupling improves the skill of the heat flux 

simulation over equatorial Indian Ocean and western tropical Pacific, two regions that are crucial 

for monsoon development (Wu et al. 2006).  

The skill of ECPM in producing the monsoon-ENSO relationship is shown in Figure 14. 

The figure shows the correlation between June-September precipitation averaged over India 

(5˚N-25˚N and 60˚-100˚E ) and SSTAs during the next winter season (December – February). As 

was shown in Kirtman and Shukla (2002), the uncoupled AGCMs do not correctly simulate this 

relationship. Figure 14 shows lots of similarities between simulated by ECPM (upper panel) and 

observed (lower panel) correlation maps. The observed correlation map was derived from CAMS 

precipitation data and NCEP OI SSTs. The models correctly captures broad tropical Pacific and 

Indian Ocean negative correlation pattern. This result is comparable with the correlation pattern 

produced by COLA ACGCM (Kirtman and Shukla, 2002). Therefore it is safe to say that our 

coupled model has good skill in simulating Indian monsoon-ENSO relationship. 

Due to the lack of disk storage, we did not save daily data for this initial run; thus, we are 

not able to analyze the skill of simulating higher frequency MJO and storm tracks. However, in 

the future, we do plan to analyze higher frequency processes in the coupled model.  

 

5. Skill of the Retrospective Forecast 

We performed ECPM retrospective forecasts for different months. The initial oceanic 
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conditions were obtained directly from the JPL ocean analysis. Since we use the same ocean 

model configuration as the JPL analysis, our model forecast starts smoothly from the ocean 

analysis, without any noticeable initial shocks. We have now performed one-year predictions 

starting at the beginning of each month from 1994 to present. The climatology derived from 

these retrospective forecasts is used to obtain the anomalies for the real-time forecast. The skill 

of the NINO3.4 predictions, measured by the correlation between the simulated SST NINO3.4 

anomalies and the observation (Figure 15), demonstrates that the skill of the forecasts initiated in 

winter usually drops by the fourth month (spring barrier), but then picks up again and stays high 

for up to 12 months after the coupled model dynamics starts to influence the predictability. The 

skill of the forecasts started in summer is very high for up to 9 months lead time. The correlation 

values smaller than 0.52 (95% confidence level for 12 degrees of freedom) are masked. The 

ECPM skill seasonal dependency is similar to the one obtained from the NCEP Climate Forecast 

system (Saha et al 2006).  Analogous skill (not shown here) for the North Pacific/North 

America 500-hPa height also indicates a drop in prediction skill by the 6th month of integration.  

Based on this initial ensemble of predictions, we have now started to produce near real-

time experimental seasonal forecasts (see http://ecpc.ucsd.edu/COUPLED/CM/coupled.html). 

Figure 16 demonstrates the relationship between the ECPM SST anomalies forecast and 

predictions by the dynamical models used for IRI SST anomalies forecasts in the NINO 3.4 

region for 2004-2005 forecasts started in May-December. The scatter-plot includes the forecasts 

from the following  models: NASA/NSIPP model, NCEP Coupled Forecast  System, Japan 

Meteorological Agency model , Scripps Institution HCM , Lamont-Doherty model , POAMA 

(Australian) model , ECMWF model , UKMO model , SNU (Korea) model , ZHANG ICM 

model ,  ECHAM/MOM , COLA ANOMALY Model. The data was obtained from 

http://iri.columbia.edu/climate/ENSO/currentinfo/archive/index.html. The red line indicates a 
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perfect prediction. The closer the point to the line, the better is the prediction. The IRI models 

exhibit large scatter in the fourth quadrant, meaning that there is a large error in negative 

NINO3.4 SST anomalies prediction. The ECPM has smaller errors in the fourth quadrant, as well 

as smaller scatter around the red line. Again, it should be noted that our forecast skill evaluation 

is preliminary since it is based on a smaller number of realizations than larger ensemble 

predictions from the other models.  

The skill of 4-6 months lead prediction of DJF (from initial conditions centered at August 

1-st) near surface variables (precipitation and 2m temperature), measured by correlation between 

observed and predicted anomalies, is shown in Figure 17. The correlation coefficients smaller 

than 95% statistical significance level cutoff are masked. ECPM has some skill in predicting 2m 

temperature (T2m) over north-western parts of the United States, part of the west coast of 

Canada and Alaska. The model has a good skill in predicting precipitation over the north-eastern 

part of the United States and Alaska. For these regions, the model skill is similar to the skill of 

the FSU climate model coupled to the NCAR Community Land Model Version 2 (CLM2) as 

discussed in Shin et al. (2005).  

Figure 18 shows the skill of the model in 4-6 months lead prediction of the oceanic   

400 m heat content and temperature along the equator. The upper panel shows the correlation 

between December-January-February (DJF) 1994-2005 anomalies predicted from the ECPM 

integrations started at the beginning of August and the corresponding anomalies from the JPL 

analysis of the DJF 400 m heat content. Though the correlations are very high over the tropical 

Pacific Ocean, the ECPM skill is poor over the tropical Indian Ocean.  

The corresponding skill in predicting equatorial temperature in the Pacific Ocean is shown in the 

lower panel of Figure 19. The depth-longitude cross-section of the correlation between ECPM 

and JPL equatorial DJF temperature anomalies exhibits high skill in predicting oceanic 
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temperatures over this region. 

     

6. Summary and Further Work 

We summarize the description and skill of some prominent coupled models currently 

being used for seasonal climate predictions in Table 1. The skill is measured by correlation 

coefficients (for the period of 1994-2005) between predicted wintertime December-January-

February (DJF) anomalies (4-6 months lead forecasts initialized in August) and observed DJF 

anomalies. The Correlation coefficients were averaged over the western United States for 2m 

temperature and south-eastern United States for precipitation (regions with the correlations 

greater than 0.5 on the maps on Figure 22). Data for the DEMETER models was obtained from 

the DEMETER website. Only one ensemble member was used for these calculations. Compared 

to other models, ECPM exhibits relatively good skill in predicting precipitation and T2m and pcp 

over the selected United States areas. Again, the main drawback is that we have not yet had the 

resources to perform many additional ensemble forecasts and due to the availability of JPL 

assimilation ocean analysis, the forecasts are based only on the 1994-2005 period. However, 

these preliminary results are promising and provide an indication of the potential of the ECPM. 

In the future we will compare ECPM with the 11 coupled models that were assessed by 

Lawrence Livermore National Laboratory’s Program for Climate Model Diagnosis and 

Intercomparison (Philips et al. 2006) 

The main reasons why ECPM should now be included into the mix of similar coupled 

models including the one developed at NCEP are as follows:  

• Both ECPC atmospheric and ocean models are very nearly identical to the ones used for data 

assimilation, thus initial conditions for both atmosphere and ocean are consistent and initial 

spin-up is small.  This is also true for NCEP CFS, NASA NSIPP, COLA and other systems 
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that perform ocean data assimilation.   

• The adjoint of the JPL MIT Ocean model is used routinely to produce a 4-D ocean state 

assimilation. The consortium for Estimating the Circulation and Climate of the Ocean 

(ECCO) has already demonstrated the feasibility and utility of providing global, sustained, 

dynamically sensible estimates for the full three-dimensional, time-varying oceanic state and 

associated surface forcing fields required to bring the model into consistency with ocean 

observations.  The use of the 4-D variational ocean assimilation system to minimize the 

initial drift of the ocean model may be an improvement upon the older GFDL assimilation 

system in use at NCEP. 

• The ocean model component is different from that in other coupled models. Different ocean 

models and assimilation systems are needed to span the natural uncertainty associated with 

ocean initial conditions and forecasts. 

• These global coupled model simulations and forecasts are beginning to be used as boundary 

conditions for regional coupled model simulations and forecasts. In particular, we are 

beginning to develop a corresponding regional coupled atmosphere-ocean model  that can 

be used in coastal regions (Seo et al. 2006) 

In order to develop the coupled ocean-atmosphere-land model for long lead climate 

prediction (multi-seasons), we are now planning to further asses the skill of the coupled model 

retrospective forecasts and compare this skill with the two-tiered prediction model. As was 

shown, the skill of the forecasts depends on the start date and targeted season, and thus should be 

similar to the skill found in other coupled models. To get more statistically robust results, 

especially for individual predictions, we intend to perform 10 member ensemble predictions for 

each month of the recent 14 years period (t the JPL ocean state analysis is updated monthly and 

is available from 1993-present). A single initial condition will be used for the ocean initial 
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condition since only single oceanic initial conditions are available each month. However, the 

multiple initial conditions for the atmosphere ensemble will be extracted from R-2 from every 

12-hour initial state nearest to the beginning of each month.  

We will also study the idealized predictability of the coupled model.   For this purpose, 

we intend to perform a long (100 year) 10 member ensemble coupled model simulation without 

any flux correction. We will use this coupled long simulation as a proxy for an observed state, 

and perform 2-tier and additional coupled runs with perturbed initial conditions of ocean and 

atmosphere. We will then compare the statistics from these runs with the original long coupled 

integration as well as with the actual forecast experiments. This effort could provide a possible 

upper boundary to coupled predictability, which may then be useful for helping us to better 

understand the ultimate capability of our coupled model. 
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Figure and Table Captions: 

Table 1: Forecast skill of ECPM and DEMETER models in predicting precipitation and 2m 

temperature over the United States. Skill is measured by correlation coefficients (for the period 

of 1994-2005) between predicted wintertime December-January-February (DJF) anomalies (4-6 

months lead forecasts initialized in August) and observed DJF anomalies. The Correlation 

coefficients were averaged over the western United States for 2m temperature and south-eastern 

United States for precipitation (regions with the correlations greater than 0.5 on the maps on 

Figure 22). Data for the DEMETER models was obtained from the DEMETER website. Only 

one ensemble member was used for these calculations. 

 

Fig. 1: Height-latitude cross-sections during the Boreal winter (left column) and summer (right 

column) of the zonal mean temperature profiles obtained from a long integration of the 

ECPM (upper row). The differences between coupled model simulation and 

corresponding R-2 data are shown in the lower row.  Contour interval of 10º K for 

the full fields and 1º K for differences. Bold contour in the difference maps shows the 

zero values.  

 Fig 2: Boreal winter (left column) and summer (right column) SST obtained from a long 

integration of the ECPM (upper row). The difference between ECPM simulation and 

corresponding NCEP OI SST data are shown in lower row.  Contour interval is 5º K 

for the full fields and 0.5º K for differences.  

Fig. 3: DJF (left column) and JJA (right column) precipitation obtained from 56-year long 

ECPM integration (upper row); Difference between ECPM and CMAP climatology 

(second from the top row) and R-2 precipitation climatology          (third from 

the top row).  Difference between R-2 and CMAP climatology (lower row). Contour 
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interval is 1 mm Day-1 

Fig. 4. Annual mean 400m heat content. (upper panel) simulated by ECPM. The lower row 

shows the difference between JPL MIT assimilated data and ECPM 56-year 

integration. Contour interval 2 J m-2 for the full fields and 0.5 J m-2 for the 

differences. Bold contour in the difference maps shows the zero values. 

Fig. 5. ECPM Annual mean (upper panel) height-latitude cross-section of the ocean temperature 

field averaged from 5ºN to 5ºS. The lower row shows the difference between JPL MIT 

assimilated data and ECPM 56-year integration. Contour interval 2º K for the full field, 

and 0.2º K for the differences. 

Fig. 6: ECPM annual mean SSTs in the tropics (top left panel), contour interval 1˚ K. ECPM 

annual mean zonal wind stress (multiplied by 102) in the tropics (top right), contour 

interval 2 N m-2. Annual cycle along the equator (2˚N-2˚S) of the deviations from the 

annual mean ECPM SSTs (lower left), contour interval 0.5˚ K. Lower right: the 

deviations from the annual mean ECPM zonal wind stress multiplied by 102, contour 

interval 1 N m-2 

Fig. 7: Annual cycle of the correlation between IOD index (based on the difference in SST 

between the west (10˚S-10˚N, 50˚-70˚E) and southeast (5˚S-0˚, 90˚-110˚E) tropical 

Indian Ocean), west and south east nodes of the dipole index and NINO3.4.    

Fig 8: Standard deviation of the annual-mean SST (K). Left: ECPM 56 years of simulations. 

Right: NCEP OI SST for the period of 1950-2005. Contour interval 0.1˚ K 

 

Fig. 9: Spectral analysis of the wintertime NINO3.4 (5˚N-5˚S, 170˚W-120˚W) ECPM SSTAs 

obtained from the 56-year integration (solid red line) and NCEP/DOE OI SSTAs for 

1950-2005 period (solid green line). The corresponding red noise spectra (dashed 



 38

magenta line for ECPM and dashed blue for OISST) indicate the significance of the 

power peaks.  

Fig. 10: Upper panel: wintertime SSTAs averaged over NINO3.4 region simulated by ECPM  

(solid line) and NCEP OISST (dashed line). Lower row: frequency distribution of the 

NINO3.4 SSTAs in ECPM (left panel) and NCEP OI SST data (right panel). 56 years 

of ECPM simulations were used. NCEP OISST data is for 1950-2005 time period 

Fig. 11: ECPM lag -regression maps obtained by regressing onto the normalized NINO3 index. 

From left to right: SST (units [K K-1]), zonal wind stress anomalies(N m-2 K-1), upper 

ocean temperature averaged over upper 250 m([K K-1]), upper ocean zonal current 

averaged over upper 50m ([m s-1 K-1]). All fields are averaged over 2ºS-2ºN. The time 

goes from -18 months to +18 month. Positive time means that NINO3 index is leading.  

Fig. 12:  Correlation between NINO3.4 and SSTAs. Left: ECPM; right: NCEP OI SSTAs. 

Contour interval 0.1.  

Fig. 13:  Correlation between SST and latent heat anomalies from ECPM (top panel) and from 

AMIP GSM integration data (bottom panel). Interval is 0.1 

Fig. 14: Correlation between Indian summer (June-September) monsoon rainfall and the 

subsequent winter season DJF SSTAs. Top: ECPM; Bottom: CAMS precipitation and 

NCEP OI SSTs.  

Fig. 15: The skill of the NINO3.4 predictions measured by the correlation between ECPM and 

NCEP/DOE OI NINO3.4 SST anomalies Correlations coefficients that are less than 

95% significance level cutoff are masked 

Fig. 16:  Scatter plot of NINO3.4 SST anomalies predictions (2004-2005) started in May-

December versus NCEP/DOE OI SSTAs. The red line indicates perfect prediction, the 

closer the point to the line, the better the prediction. The IRI models exhibit large 
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scatter in the fourth quadrant, meaning that there is a large error for negative NINO3.4 

SST anomaly predictions. ECPM has smaller errors in the fourth quadrant, as well as 

smaller scatter about the red line.  

Fig. 17: Skill of the 4-6 months lead DJF prediction of near surface variables: precipitation and 

2m temperature (T2m) from forecasts started at the beginning of August for the 1994-

2005 time period. Correlations coefficients that are less than 95% significance level 

cutoff are masked. 

Fig. 18: Upper panel: the correlation between DJF 1994-2005 anomalies predicted from the 

ECPM integrations started in August and the corresponding anomalies from the JPL 

analysis of the DJF 400 m heat content. Contour interval 0.1 Lower panel: same as 

upper panel but for the depth-longitude cross-section of the correlation between ECPM 

and JPL equatorial DJF temperature anomalies.  Contour interval 0.1. Correlations 

coefficients that are less than 95% significance level cutoff are masked 
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Table 1. Skill (measured by correlation) of coupled model predictions for the US regions 

Model  Ocean Atmosphere  4-6 months lead 
skil:l precip 

4-6 months lead 
skill: T2m 

CERFACS OPA8.2 
2x2, L31 

ARPEGE 
T63, L31 0.5 0.7

ECMWF HOPE-E; 
1.4x0.3-1.4, L29 

IFS, T95, L40 
0.5 0.7

LODYC OPA8.2 
2x2, L31 

IFS, T95, L40 
0.7 0.5

Met Office OGCM based on 
HadCM3; 
1.25x0.3-1.25, 
L40 

HadAM3, 
2.5x3.75, 
L19 

0.7 

 

0.5 

MPI MPI, 1.5x1.5 L40 ECHAM5, 
T63L31 0.6 0.4

ECPM  
 

MIT 1x1/3-1,  
L46 

GSM T62, 
L28 

 
 

0.6 

              

0.7
 

 

 
Forecast skill of ECPM and DEMETER models in predicting precipitation and 2m temperature 
over the United States. Skill is measured by correlation coefficients (for the period of 1994-
2005) between predicted wintertime December-January-February (DJF) anomalies (4-6 months 
lead forecasts initialized in August) and observed DJF anomalies. The Correlation coefficients 
were averaged over the western United States for 2m temperature and south-eastern United 
States for precipitation (regions with the correlations greater than 0.5 on the maps on Figure 22). 
Data for the DEMETER models was obtained from the DEMETER website. Only one ensemble 
member was used for these calculations. 
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Fig. 1: Height-latitude cross-sections during the Boreal winter (left column) and 
summer (right column) of the zonal mean temperature profiles obtained from a long 
integration of the ECPM (upper row). The differences between coupled model 
simulation and corresponding R-2 data are shown in the lower row.  Contour 
interval of 10º K for the full fields and 1º K for differences. Bold contour in the 
difference maps shows the zero values. 
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Fig 2: Boreal winter (left column) and summer (right column) SST obtained from a 
long integration of the ECPM (upper row). The difference between ECPM 
simulation and corresponding NCEP OI SST data are shown in lower row.  
Contour interval is 5º K for the full fields and 0.5º K for differences. 
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Fig. 3: DJF (left column) and JJA (right column) precipitation obtained from 56-year long ECPM 
integration (upper row); Difference between ECPM and CMAP climatology (second from the top 
row) and R-2 precipitation climatology  (third from the top row).   
Difference between R-2 and CMAP climatology (lower row). Contour interval is 1 mm Day-1 
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Fig 4: Annual mean 400m heat content. (upper panel) simulated by ECPM. The 
lower row shows the difference between JPL MIT assimilated data and ECPM 56-
year integration. Contour interval 2 J m-2 for the full fields and 0.5 J m-2 for the 
differences. Bold contour in the difference maps shows the zero values. 
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Fig.5: ECPM Annual mean (upper panel) height-latitude cross-section of the ocean 
temperature field averaged from 5ºN to 5ºS. The lower row shows the difference 
between JPL MIT assimilated data and ECPM 56-year integration. Contour interval 2º 
K for the full field, and 0.2º K for the differences. 
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Fig. 6: ECPM annual mean SSTs in the tropics (top left panel), contour interval 1˚ K. ECPM 
annual mean zonal wind stress (multiplied by 102) in the tropics (top right), contour interval 2 N 
m-2. Annual cycle along the equator (2˚N-2˚S) of the deviations from the annual mean ECPM 
SSTs (lower left), contour interval 0.5˚ K. Lower right: the deviations from the annual mean 
ECPM zonal wind stress multiplied by 102, contour interval 1 N m-2. 
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Fig. 7: Annual cycle of the correlation between IOD index (based on the difference in SST 
between the west (10˚S-10˚N, 50˚-70˚E) and southeast (5˚S-0˚, 90˚-110˚E) tropical Indian 
Ocean), west and south east nodes of the dipole index and NINO3.4. 
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Fig 8: Standard deviation of the annual-mean SST (K). Left: ECPM 56 years of simulations. 
Right: NCEP OI SST for the period of 1950-2005. Contour interval 0.1 K 
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Fig. 9: Spectral analysis of the wintertime NINO3.4 (5˚N-5˚S, 170˚W-120˚W) ECPM 
SSTAs obtained from the 56-year integration (solid red line) and NCEP/DOE OI 
SSTAs for 1950-2005 period (solid green line). The corresponding red noise spectra 
(dashed magenta line for ECPM and dashed blue OISST) indicate the significance of 
the power peaks.  
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Fig. 10: Upper panel: wintertime SSTAs averaged over NINO3.4 region simulated by 
ECPM  (solid line) and NCEP OISST (dashed line). Lower row: frequency 
distribution of the NINO3.4 SSTAs in ECPM (left panel) and NCEP OI SST data (right 
panel). 56 years of ECPM simulations were used. NCEP OISST data is for 1950-2005 
time period 
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Fig. 11: ECPM lag -regression maps obtained by regressing onto the normalized NINO3 index. 
From left to right: SST (units [K K-1]), zonal wind stress anomalies(N m-2 K-1), upper ocean 
temperature averaged over upper 250 m([K K-1]), upper ocean zonal current averaged over upper 
50m ([m s-1 K-1]). All fields are averaged over 2ºS-2ºN. The time goes from -18 months to +18 
month. Positive time means that NINO3 index is leading.  
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Fig. 12:  Correlation between NINO3.4 and SSTAs. Left: ECPM; right: NCEP OISSTAs. 
Contour interval 0.1 
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 Fig 13: Correlation between SST and latent heat anomalies from ECPM (top panel) 

and from AMIP GSM integration data (bottom panel). Interval is 0.2 
 



 54

 
 
 
 
 

Fig. 14: Correlation between Indian summer (June-September) monsoon rainfall and 
the subsequent winter season DJF SSTAs. Top: ECPM; Bottom: CAMS 
precipitation and NCEP OI SSTs. 
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Fig. 15: The skill of the NINO3.4 predictions measured by the correlation between 
ECPM (1994-2005) and NCEP/DOE OI NINO3.4 SST anomalies Correlations 
coefficients that are less than 95% significance level cutoff are masked 
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 Fig. 16:  Scatter plot of NINO3.4 SST anomalies predictions (2004-2005) started in 

May-December versus NCEP/DOE OI SSTAs. The red line indicates perfect 
prediction, the closer the point to the line, the better the prediction. The IRI models 
exhibit large scatter in the fourth quadrant, meaning that there is a large error for 
negative NINO3.4 SST anomaly predictions. ECPM has smaller errors in the fourth 
quadrant, as well as smaller scatter about the red line. 
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 Fig. 17: Skill of the 4-6 months lead DJF prediction of near surface variables: 

precipitation and 2m temperature (T2m) from forecasts started at the beginning of 
August for the 1994-2005 time period. Correlations coefficients that are less than 
95% significance level cutoff are masked 
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Fig. 18: Upper panel: the correlation between DJF 1994-2005 anomalies predicted 
from the ECPM integrations started in August and the corresponding anomalies 
from the JPL analysis of the DJF 400 m heat content. Contour interval 0.1 Lower 
panel: same as upper panel but for the depth-longitude cross-section of the 
correlation between ECPM and JPL equatorial DJF temperature anomalies.  
Contour interval 0.1. Correlations coefficients that are less than 95% significance 
level cutoff are masked 


