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Abstract 24 

A metric to quantify the value added by high resolution models is introduced.   It is based 25 

on a characteristic spatial distribution of skill rather than the averages of skill values.   Normal 26 

distribution functions are fit to the model skill distribution of coarse and fine resolution models 27 

and a new metric (Added Value Index, AVI) is defined as the area enclosed by the two 28 

distribution functions, with information on the way the two curves cross each other.   The AVI is 29 

computed for a case of downscaling seasonal forecasts and is shown to properly provide a 30 

different degree of added value by high resolution models.  31 

  32 



1.   Introduction 33 

Regional models have been used extensively for the purpose of short range forecasting 34 

and dynamical downscaling.  The merits and demerits of regional models have been discussed by 35 

many (Anthes et al, 1989;  de Elía and Laprise, 2003; Castro, 2005;  Feser, 2006; Rockel et al, 36 

2008; Prömmel et al, 2009;  Winterfeldt and Weisse, 2009 ).   In those studies, one of the most 37 

difficult subjects is to quantitatively represent the magnitude of value added by high resolution 38 

models in comparison to the coarse resolution models used as large scale forcing.  Many studies 39 

simply show the high resolution spatial distribution maps and argue that the model output 40 

provides more realistic small scale features without any quantitative measures.  Such studies are 41 

misleading to those who intend to use the high resolution results for quantitative applications.   42 

For a quantitative measure, most studies calculate bias errors, root mean square errors or 43 

temporal correlations with available station observations, or with a high resolution gridded 44 

analysis, and their individual values or area means are compared.   Some studies drive 45 

application models (such as river routing, hydrology, agricultural, forest fire, etc.) and compare 46 

the output with observations, while others examine the spatial and temporal spectrums of the 47 

model results (Castro et al. 2005).   For some idealized cases, it can be possible to quantitatively 48 

measure the errors of different spatial scales when the truth is given as a control experiment.  In 49 

reality, such validation is generally very difficult for regional forecasts and downscalings since 50 

good high resolution analyses are hard to obtain.    In the idealized framework, de Elia and 51 

Laprise (2003) used a distribution-oriented approach that makes it possible to measure the skill 52 

depending on the value of the field itself.  This provides a useful tool for understanding the 53 

predictability based on the spatial spectrum of the field and measuring the skill of rare events.   54 

More studies have been done to measure the skill in probabilistic forecasts, but this paper will 55 

not address them. 56 



For a quantitative measure of the value added by regional models, some estimate of the 57 

degree of fit of the simulation to observation must be used.  In the next subsections, we will point 58 

out two independent problems with applying the most commonly used geographical distribution 59 

of temporal correlation or root mean square fit between simulations and observations as a 60 

measure for added value.  The first problem concerns the difference in model resolution, which 61 

complicates the relation between fit to observation and model error.  The second problem 62 

addresses the geographical distribution of the skill.   We will then propose a new metric, the 63 

Added Value Index (AVI) which addresses the second problem.    64 

1.1.   Representativeness error 65 

The above measures are based on how the model output deviates from the validating 66 

observations.   Such measures may not be appropriate to quantify the added value of a regional 67 

model since the difference in the output spatial resolution itself may make the comparison 68 

problematical.  In other words, it becomes difficult to differentiate the cause of the added value, 69 

whether it is from model resolution or model error.   The inference of this differentiation 70 

between resolution and model error will be explained below. 71 

The model grid point value is considered as a mean of the field represented by a grid 72 

point, which is a function of model grid size.  Since the value is the most likely estimate at the 73 

grid, there is an error associated with it. This error may be named the representativeness error 74 

(εR), as it is commonly called in objective analysis.  εR varies with model resolution as well as 75 

with the spatial variability of the field.  For example, for near surface fields εR will be large over 76 

complex terrain and small over smooth land or over ocean.  εR will be smaller for a smooth field, 77 

such as 500 hPa height, but larger for noisier vorticity, divergence and precipitation.   When a 78 

model simulation is verified against station observations or fine resolution analysis on a grid, the 79 

model grid point values are interpolated to the station (or fine resolution grid) locations and the 80 



difference from the observation is used as a measure of the fit of the model to observation.  81 

Considering εR as introduced above, this process will be expressed as: 82 

F 
M(xobs)= [ F 

T(xgrid ) + εM +εR],  83 

where F(xgrid) is a field examined at grid points xgrid, εM is a model error, and the bracket 84 

indicates a spatial interpolation operator.  Subscript ‘obs’ indicates the observation at the 85 

location. Superscript T indicates truth and M indicates model.  The interpolation introduces an 86 

additional error εI from the interpolation of F 
T(xgrid), εM and εR, which leads to the following 87 

relation:   88 

F 
M(xobs)= [ F 

T(xgrid ) ]+ [εM] +[εR]+ εI 89 

Thus, the model grid point values interpolated to the observation point have three types 90 

of errors, [εM], [εR] and εI.  It is important to note that among these errors, εR and εI are not 91 

dependent on the model and may be estimated separately from observations or historical 92 

forecasts.  In the following argument, we assume that εI is small compared to εM and εR .  In 93 

addition to the previously mentioned errors, an observation at a location has its own error εobs 94 

which consists of instrument, retrieval, and representativeness errors.    In addition, when we use 95 

a grid point analysis of observations for the skill calculation, we need to consider the additional 96 

error due to interpolation of irregularly spaced observations onto fine resolution regular analysis 97 

grid points.   The error of the model at an observation location will be written as: 98 

F 
M(xobs)-FO(xobs)= [ F 

T
 (xgrid )]+ [εM] +[εR]+ εI- F 

T
 (xobs )+εobs 99 

Since [ F 
T

 (xgrid )] is equal to F 
T

 (xobs ),  100 

F 
M(xobs)-FO(xobs)= [εM] +[εR]+ εI+εobs 101 

Therefore, the difference between model and observation at an observation location is a 102 

combination of four errors: model error, model grid point representativeness error, interpolation 103 



error, and the error in the observation itself consisting of instrument, retrieval representativeness 104 

and observation interpolation errors. 105 

The model representativeness error εR can be estimated from the method proposed by 106 

Tustison et al (2001), which interpolates a field from a fine resolution analysis grid to a lower 107 

resolution model grid by area averaging (field A), and then interpolating back to the analysis grid 108 

(field B).  The difference between the two (A-B) provides an estimate of the representativeness 109 

error. 110 

Figure 1 shows the εR and εM for two model resolutions (a global model at 200 km and a 111 

Regional model ‘b’, hereafter referred to as Model-b, at 35 km resolution).  The 112 

representativeness  error (εR) is computed from the North American Regional Reanalysis 113 

(Mesinger et al. 2010) for the global model and CaRD10 (California Reanalysis Downscaling at 114 

10 km, Kanamitsu & Kanamaru, 2007) for Model-b.  Generally, εR decreases with decreasing 115 

grid distance, as expected.  The εR is larger over the complex topography, where the small scale 116 

features dominate.  Compared to εM , εR is smaller but still significant for the coarse resolution 117 

model, while it is much smaller than the εM for the fine resolution model.  This indicates that the 118 

skill of the coarse resolution model is simply penalized by the εR, and does not represent the true 119 

skill of the model. 120 

The key point of this argument is that when we discuss the added value of the regional 121 

model, conventional skill comparisons provide a combination of different types of errors, which 122 

makes it difficult to understand the true meaning of the “valued added.”  For example, if the εM 123 

of the regional model is greater than that of the coarse resolution model, but εR is smaller due 124 

simply to the increased resolution, the fit to observations becomes better.  Do we conclude that 125 

the regional model added value?  For the model product users, the answer is probably yes, but 126 

for the modelers, the answer will probably be no.  For the case of Figure 1, the magnitude of the 127 



fit of the simulations to analysis is about the same or slightly worse for Model-b, indicating that 128 

the high resolution model error is much larger than that of the coarse resolution CFS model. 129 

The above discussion shows there are conceptual differences in interpreting  a simple fit 130 

of model grid point values interpolated to observation as a metric for added value, depending 131 

whether one approaches the issue from a modeling or application point of view. 132 

1.2. Spatial distribution of skill 133 

Recognizing the limitation of the simple fit of model grid point values to observation as 134 

noted above, there is an additional weakness in utilizing the skill improvements, particularly 135 

their area average, as a measure of the value added.  In Figure 2, we show a comparison of 136 

correlation skill against PRISM (Precipitation Elevation Regression Independent Slopes Model, 137 

Daly, et al, 2002) observations of January mean precipitation for two different resolution models. 138 

One is the NCEP/NCAR Reanalysis (Kalnay et al, 1996) and the other is the downscaling of the 139 

NCEP/NCAR Reanalysis using the 10 km resolution RSM model.   As we would expect, we see 140 

much smaller-scale detail in the skill for RSM.  When we computed the area average, the skill of 141 

NCEP/NCAR happened to have a small advantage.  The regional model’s disadvantage is 142 

coming from areas of large negative skill over the eastern slope of the Sierra Nevada Mountains, 143 

but at the same time we see enhanced skill over the western side of the mountain range.  The 144 

figure clearly indicates that the regional model’s maximum skill is larger but the area of high 145 

skill is much narrower.  This implies that the regional model will be much more useful than the 146 

coarse resolution model over these high skill score areas.  Since users will eventually look at 147 

areas where the model has useful skill, the regional model will apparently be adding value to 148 

those areas.   Simply using the skill average over the regional domain does not allow such 149 

increases in local areas to be highlighted.  In order to quantify this spatial distribution of high 150 

skill regions, we developed a new metric that compares the spatial distributions of high skill 151 

areas rather than the fit of the model simulation to observations. 152 



In Section 2, we introduce the new metric.  Section 3 describes some details of the new 153 

metric calculation.   Section 4 presents results as applied to several cases, and in Section 5 we 154 

conclude the paper. 155 

2.  Added Value Index (AVI) 156 

 Figure 3 is an idealized example of probability distribution functions (PDF) generated 157 

from a geographical map of temporal correlations of an arbitrary variable, often called a skill 158 

map.  Each curve is constructed by counting the number of grid points with the skill between 159 

skill values of S and S+ΔS, normalized by the total number of grid points in the domain of 160 

verification.  When the skill is computed as a correlation, the S value ranges from -1 to 1, but in 161 

order to fit the curve to a Gaussian distribution, we need to apply a transformation of S such that 162 

the transformed S*
 ranges from -∞ to +∞.   The choice of the transformation and further details of 163 

the computational method are described in the next section.  The thin vertical line marked Sc
* is 164 

the transformed critical useful skill of Sc using the above transformation.  In the example given 165 

and throughout the paper, we chose the Sc for seasonal prediction of 0.3.  This number is 166 

somewhat arbitrary and may have to be modified depending on the type of simulation (short-167 

range forecast, seasonal forecast downscaling or climate downscaling) and the user’s objective.   168 

In Figure 3, the solid line is assumed to be the PDF of the skill of a coarse resolution model, 169 

while the dashed line is that of the fine resolution regional model over the same domain.   It is 170 

easily shown that the two curves cross each other at two points, except for the case when the 171 

variances of the skill of the two models are equal. 172 

 We can see four situations as shown in Figure 3.  Panel (A) is the case when the average 173 

skill of the regional model is less than that of the coarse resolution model, and the higher skill 174 

tail of the distribution is lower than that of the coarse resolution model.  In this case, the regional 175 

model is inferior to the coarse resolution model in all skill ranges above the critical useful skill.  176 

The area shaded by horizontal lines indicates the number of grid points (or areas) for which the 177 



regional model is inferior.  When the regional model is inferior in all skill ranges, one of the 178 

cross points of the two PDFs is located to the left of the critically useful skill.  The other point is 179 

located to the far right of the skill axis, but this point is regarded as an artifact due to its very 180 

small area between the two curves (an example will be shown in Section 4).   181 

The second case (B) is when the mean skill is lower for the regional model, but the two 182 

curves cross due to a larger variance of the skill for the regional model.  In this case, the regional 183 

model is inferior to the coarse resolution model up to the skill at the cross point (indicated by XP 184 

in the figure) but superior at higher skill.  The area shaded by the horizontal lines is the area 185 

where the regional model is less skillful, while the cross-hatched area is where the regional 186 

model skill is higher.  We may interpret this case as the useable skill redistributed from low to 187 

high skills.  The example shown in Figure 2 corresponds to this case.  The third case (C) is a 188 

complete opposite of (B).  The fourth case (D) is the case when the mean skill of the regional 189 

model is higher, and also the area of high skill exceeds that of the global model.    190 

In terms of added value by the regional model, case (D) is when the regional model 191 

performance is better than the coarse resolution model at all skill ranges.  This is often the 192 

primary goal of regional modelers.  But case (B) is also apparently adding value compared to the 193 

coarse resolution model, since the regional model has areas of much higher skill at higher skill 194 

values.  This case is important for application since the regional model has higher utility over the 195 

areas of high skill.  Note that in this case the mean skill over the regional domain is less than that 196 

of the coarse resolution model, thus one may falsely conclude that the regional model does not 197 

add value.  Case (C) is when the regional model behavior is unreasonable, since the high 198 

resolution model provides smaller high skill areas than the coarse resolution model.  Case (A) is 199 

a catastrophic case when the regional model has no advantage over the coarse resolution model 200 

at any skill level. 201 



 What we propose here is an index comprised of one number representing the area where 202 

the regional model skill is greater than that of the coarse resolution model and a symbol 203 

indicating the existence of the cross point.  When the cross point does not exist or the point is far 204 

to the right of the x-axis, we show the area between the PDFs of the two models from the critical 205 

useful skill to infinity.  When the cross point exists, we simply show the area to the right of the 206 

cross point.  The difference between the cross-hatched and horizontal-line-hatched areas in 207 

Figure 3 may be of interest for overall performance, but it is already indicated by the domain 208 

mean skill. Choosing only the area of higher skill will augment the added value of the regional 209 

model.   If we look at this index together with the mean skill, we will be able to see how the skill 210 

values are distributed in space and whether the regional model is adding value.  We will call this 211 

index, Added Value Index (AVI). 212 

 Not surprisingly, the newly defined index, AVI varies with the nature of the field used to 213 

compute the skill, the size of the domain and, of course, the model used to make the simulations.  214 

In Section 4, we will show several examples of the AVI and demonstrate its usefulness.  We will 215 

also briefly discuss the errors in AVI depending on the size of the area. 216 

3.  Computational details 217 

 The fit of the geographical distribution of skill to the Gaussian distribution requires some 218 

caution.  The distribution may not necessarily follow the Gaussian distribution, requiring a 219 

transformation of the skill values, S.   We examined the fit of the geographical distribution of 220 

skill of various variables to a normal distribution by constructing several Normal Test Plots.  221 

These plots are scatter diagrams of a theoretical normal distribution vs. observed skill data.  222 

Depending on the shape of the curve, we can identify the skewness and short/long tail 223 

distribution.  If the skewness is found to be significant, we can reconstruct the skill data by 224 

assuming that the data less than the mean are symmetric to the mean.  This will remove the 225 

skewness without affecting our results since we are only interested in the positive useable skill.  226 



The shorter and longer tails can be adjusted by varying the transformation functions used to 227 

convert the skill value from -1 to +1 to -∞ to +∞.  The function we used in our study is: 228 

S*=S/(1-ABS(S)n)                         (1) 229 

By changing the value of n (larger n will shorten the tail and fractional n will lengthen the tail), 230 

we can improve the fit of the sample to the Gaussian distribution.    When we applied this 231 

method with various ‘n’ to precipitation, near surface temperature, and 500 hPa height, we found 232 

that the data transformed with n=8 had the best fit.    Figure 4 shows the Normal Test Plot before 233 

the transformation and after the n=8 transformation.    For all three variables, the data fit the 234 

normal distribution very well.  There is little skewness in the distribution, however there was 235 

enough that we adjusted for skewness in our study.  The n=8 transformation slightly improved 236 

the fit of 500 hPa height to a normal distribution, but there was almost no difference for near 237 

surface temperature and precipitation.  Table 1 shows the slope of the fitted line for the three 238 

variables with no transformation, n=4 and n=8 transformations.   When we measure the goodness 239 

of the fit as a slope equal to one, we see improvement for 500 hPa height with n=8.   240 

4.    Examples 241 

 We applied the above definition of AVI to several cases of downscaled seasonal 242 

forecasts.  The data used in this calculation are from the MRED (Multi-RCM Ensemble 243 

Downscaling of Seasonal Forecasts, details available from the data archive at 244 

https://docs.google.com/viewer?url=http://www.eol.ucar.edu/projects/cppa/meetings/200809/pre245 

sentations/Tuesday/T0930_Arritt.pdf.  Two regional models were chosen from the archive, 246 

Model-a and Model-b, both downscaled from the NCEP Climate Forecast System (Saha et al., 247 

2006)).  CFS has a horizontal resolution of about 200 km while both regional models are run 248 

using a 35 km resolution over the contiguous United States.  An ensemble mean of 10 members 249 



for the period 1983 to 2008 was used for all three models.  Only the downscaling for the 250 

January-February-March seasonal average is utilized.     251 

Figure 5 shows an example of the difference of skill PDFs between CFS and the two 252 

regional models for near surface temperature over the southern Texas region.  The cross point 253 

between the two PDFs occurs when the skill is near 0.5 for both regional models.    Both models’ 254 

skills are reduced up to the cross point and the skill greater than the cross point is increased.  The 255 

rate of decrease and increase is larger for Model-a than for Model-b.  This figure indicates that 256 

the geographical distribution of the low resolution CFS skill is redistributed to higher skills in the 257 

downscaled regional models, but the area mean skill is reduced slightly.  This is a demonstration 258 

of small areas of higher skill in the regional simulations adding value compared to the CFS 259 

(example B described in Section 2). 260 

 Table 2 presents a summary of the cases examined for this paper.   The AVI is obtained 261 

for surface temperature, precipitation, the u- and v-components of near surface winds, and 500 262 

hPa geopotential height.  Two areas, one over Texas and Mexico (110 to 96o West, 25 to 36o 263 

North, square area shown in Figure 6 left panel) and the other over the entire contiguous United 264 

States and northern Mexico are chosen to examine the variability of AVI with domain size.  In 265 

addition, two regional models, a and b are validated.   266 

 The second and third columns of Table 2 (downscale mean and CFS mean) compare the 267 

area mean skill from a regional model and the coarse resolution CFS model.     If we use this as a 268 

measure of value added, regional models have higher skill than the CFS only 8 times, while the 269 

CFS is better 9 times.  Apparently, high resolution models do not add value to the CFS forecasts 270 

if we simply compare the domain average skill.   The fifth and sixth columns of the table show 271 

the area between the two PDF curves, first from the critical skill level (.3) to the cross point, and 272 

then from the cross point to infinity.  In the case where there is no cross point between the 273 

critical skill level and the far right of the x-axis, the sixth column shows the difference from 0.3 274 



to infinity.  This sixth column gives the AVI.  The character ‘x’ attached at the end of the 275 

number indicates the presence of a cross point.  When we examine the AVI, the regional model 276 

improves over the CFS 14 times, showing the added value of the regional downscaling clearly.   277 

For individual models, Model-a added value 4 times out of 10, while the domain mean skill is 278 

better only one time.   For Model-b, value is added 10 out of 10 times, while the domain mean 279 

skill is better 5 times out of 10.   Thus, among the two models, Model-b seems to be better than 280 

Model-a, always adding value to the CFS forecasts, while Model-a fails to add value in several 281 

cases.   This table nicely demonstrates the value added by the regional models compared to the 282 

simple use of area mean skill 283 

Comparing the near surface temperature skill maps of the three models (Figure 6), it is 284 

clear that Model-a and Model-b have larger areas of higher correlation over the Pacific 285 

Northwest coast.  Model-a has an area of good skill to the south of Lake Superior but Model-b 286 

has a larger area of skill greater than 0.5 over Mexico.  Thus, we expect AVI to be positive for 287 

Model-a and -b, but Model-b should have a slight edge over Model-a due to larger areas of 288 

higher skill over the Northwest.   Over Texas/Mexico, the area of skill higher than 0.5 is greater 289 

for Model-b than Model-a.  From these subjective observations, we expect AVI to be positive 290 

and larger for Model-a than for Model-b for the U.S. area while we expect the opposite for the 291 

Texas/Mexico area, which agrees with the AVI table discussed above.  Thus, AVI is able to 292 

differentiate subtle differences in the high skill areas between the three models.  Table 2 also 293 

gives AVI for 500 hPa height.  This field is selected to highlight the different behavior of the 294 

model performance due to the spatial variability of the field.  Interestingly, AVI did not show 295 

any different behavior, except much higher mean skill over the large US domain for both models 296 

and Model-a’s unrealistic behavior of negative AVI with cross point, which is also seen in the 297 

skill of u-component of the wind. 298 



These examples demonstrate clearly that the AVI can quantitatively present added value 299 

that cannot be shown by the area mean skill alone.  The current example also was successful in 300 

differentiating skill of two models very well. 301 

The error in the computation of the AVI can be estimated from the estimated error of 302 

mean and variance of skills that depends on sample size and variance.  It was found that the 303 

estimated error of cross point and AVI are very small due to the large number of grid points used 304 

in our calculations.   305 

5.  Conclusions 306 

 A new metric to quantitatively measure the value added by regional models was 307 

introduced.  The motivation comes from comparing the geographical patterns of temporal 308 

correlation skill maps between low and high resolution models.  The high resolution model tends 309 

to give very high skill over small scale regions, while the low resolution model tends to give 310 

relatively lower skill over a larger domain.  At the same time, the high resolution model often 311 

produces small regions of large negative correlation, and thus a simple area average skill cannot 312 

differentiate this important difference in the characteristics of the geographical distribution.   In 313 

other words, it is necessary to provide not only the mean skill but also a measure of the 314 

geographical distribution of skill.  The proposed method focuses on the probability distribution 315 

of the geographical distribution of temporal correlation in the regional model domain or its sub-316 

domain.   We first fit the skill distributions of two models to normal distributions, then overlay 317 

them and compute the cross points of the two PDFs.   We define the Added Value Index (AVI) 318 

as the area beyond critical useful skill where the regional model skill is greater than that of the 319 

coarse resolution model.  Here the critical useful skill is a predetermined skill beyond which the 320 

simulation is considered to be useful for the user’s objectives.  When the cross point between the 321 

two PDFs is far to the right of the skill axis, we assume that there is no cross point, and the AVI 322 



becomes the area between the two curves from critical useful skill to 1.   The AVI will thus be 323 

expressed as one number and a symbol expressing the existence of a cross point. 324 

 This definition of the AVI was applied to several cases, and shown to satisfactorily 325 

characterize the model performance for different variables over different areas.  Although our 326 

example uses a seasonal forecast downscaling, this result will also apply to short range forecasts. 327 

 We used temporal correlation as a skill map in the current example, but normalized RMS 328 

can also be used to calculate AVI.   In addition, the AVI proposed in this study may be extended 329 

to a time series of pattern correlations.  In this case, the AVI indicates the high resolution 330 

model’s ability to represent high time frequency phenomena, or occasional high skill cases.   331 

 In a separate publication, we plan to apply the AVI to a much large number of regional 332 

downscaling simulations and present its usefulness.   333 
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Figure Captions 379 
 380 
Figure 1.  Model grid representativeness error (left panels) equivalent to CFS resolution (upper 381 

panel) and Model-b resolution (lower panel) compared with model error (left panels) for 382 

CFS (upper panel) and Model-b (lower panel).  The variable is seasonally averaged 383 

precipitation root mean square error against NARR analysis. 384 

Figure 2.  Correlation skill of January mean precipitation for CaRD10 (left) and NCEP/NCAR 385 

Reanalysis (right) verified against PRISM gridded observation.  Computation is made 386 

using 1950-1997 data.  Figure taken from Kanamitsu and Kanamaru (2007) Figure 10. 387 

Figure 3.  Idealized distribution functions of correlation skill over the model domain for two 388 

different models.  See text for more detail.  The hatched area with horizontal lines indicates 389 

where the dashed line model has lower skill, while the cross hatched area indicates 390 

otherwise. 391 

Figure 4.  Normal test plot of  near surface temperature (top), 500 hPa height (middle) and 392 

precipitation (bottom)  with no transformation (left) and n=8 transformation (right). 393 

Figure 5.  An example of the PDF differences between Model-a and CFS (dark grey line) and 394 

Model-b and CFS (light grey line).  Vertical axis is the normalized area (or number of grid 395 

points) and horizontal axis is skill. 396 

Figure 6.  An example of the geographic distribution of surface temperature skill for CFS 397 

(left),Model-a (middle), and the difference between the two (right).  398 

 399 

  400 



Table 1.  Slope of the linear fitted line between observed and normal distribution fitted skill for 401 

three variables with n=4 and 8 transformations. 402 

 2m temperature Precipitation 500 hPa height

No scaling 0.987 0.970 0.963

n=4 scaling 1.090 1.147 1.240

n=8 scaling 0.997 0.997 1.077

 403 

 404 

  405 



Table 2.  Area mean skill, cross point, difference between the two PDFs and AVI, computed 406 

from downscaling of Model-b CFS over the TX/Mex area and the contiguous United States. 407 

scaled with x/(1-x^8)          

 

Down 
Scale 

 Mean
CFS 

Mean X pt
Diff .3 
to X pt

Diff 
> X 

pt AVI 

Adde
d 
value 

T2m TX/Mex Model-a 0.35 0.34 0.41 -0.03 0.03 0.03x yes
T2m TX/Mex Model-b 0.35 0.34 0.49 -0.02 0.04 0.04x yes
T2m US Model-a 0.16 0.14 No X 0.00 0.02 0.02 yes
T2m US Model-b 0.13 0.14 0.47 -0.01 0.01 0.01x yes
Precip Tx/Mex Model-a 0.22 0.23 No X 0.00 -0.04 -0.04 no
Precip Tx/Mex Model-b 0.24 0.23 No X 0.02 0.02 0.02 yes
Precip US Model-a 0.18 0.23 No X 0.00 -0.07 -0.07 no
Precip US Model-b 0.24 0.23 No X 0.00 0.03 0.03 yes
Usfc TX/Mex Model-a 0.24 0.27 0.55 -0.06 0.02 0.02x yes
Usfc TX/Mex Model-b 0.25 0.27 0.50 -0.07 0.06 0.06x yes
Usfc US MODEL-a 0.32 0.33 0.33 0.00 -0.03 -0.03x no
Usfc US Model-b 0.33 0.33 0.56 -0.03 0.02 0.02x yes
Vsfc TX/Mex Model-a 0.07 0.13 No X 0.00 -0.07 -0.07 no
Vsfc TX/Mex Model-b 0.22 0.13 No X 0.00 0.16 0.16 yes
Vsfc US Model-a 0.10 0.12 No X 0.00 -0.05 -0.05 no
Vsfc US Model-b 0.13 0.12 No X 0.00 0.02 0.02 yes
500 ht Tx/Mex Model-a 0.63 0.64 0.65 0.04 -0.04 -0.04x no
500 ht Tx/Mex Model-b 0.65 0.64 0.63 -0.08 0.08 0.08x yes
500 ht US Model-a 0.38 0.38 0.51 -0.01 0.02 0.02x yes
500 ht US Model-b 0.38 0.38 0.46 -0.01 0.02 0.02x yes

 408 

 409 
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 416 

Figure 2.  Correlation skill of January mean precipitation for CaRD10 (left) and NCEP/NCAR 417 

Reanalysis (right) verified against PRISM gridded observation.  Computation is made using 418 

1950-1997 data.  Figure taken from Kanamitsu and Kanamaru (2007) Figure 10.  419 



 420 

 421 

Figure 3.  Idealized distribution functions of correlation skill over the model domain for two 422 

different models.  See text for more detail.  The hatched area with horizontal lines indicates 423 

where the dashed line model has lower skill, while the cross hatched area indicates otherwise. 424 

  425 



 426 

427 

 428 

Figure 4.   Normal test plot of  near surface temperature (top), 500 hPa height (middle) and 429 

precipitation (bottom) with no transformation (left) and transformed with n=8 (right). 430 

 431 
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 433 

Figure 5.  An example of the differences between Model-a  and CFS (dark grey line) and Model-434 

b and CFS (light grey line).  Vertical axis is the normalized area (or number of grid points) and 435 

horizontal axis is skill. 436 
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