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ABSTRACT

This paper presents a new Experimental Climate Prediction Center (ECPC) Coupled Prediction Model
(ECPM). The ECPM includes the Jet Propulsion Laboratory (JPL) version of the Massachusetts Institute
of Technology (MIT) ocean model coupled to the ECPC version of the National Centers for Environmental
Prediction (NCEP) Atmospheric Global Spectral Model (GSM). The adjoint and forward versions of the
MIT model forced with the NCEP atmospheric analyses are routinely used at JPL for ocean state assimi-
lation. An earlier version of the GSM was used for the NCEP–Department of Energy reanalysis-2 project
and for operational seasonal forecasts at NCEP. The ECPM climatology and internal variability derived
from a 56-yr-long coupled integration are compared with the observations and reanalysis data. Though the
ECPM exhibits climatological biases, these biases are relatively small and comparable to the systematic
errors produced by other well-known coupled models, including the recent NCEP Climate Forecast System.
The internal variability of the model resembles the observations. ECPM simulates both seasonal and
interannual variability in the tropical Pacific reasonably well. The model has good skill in reproducing the
mechanism of ENSO evolution as well as ENSO teleconnection patterns (including the Indian monsoon–
ENSO relationship). The skill of the ECPM in predicting 1994–2006 SST anomalies over the Niño-3.4
region is shown to be comparable to other coupled models. These retrospective forecasts were used for
deriving a model climatology for real-time seasonal forecasts that are currently produced and displayed at
ECPC.

1. Introduction

Dynamical seasonal forecasts with time scales rang-
ing from a few months to a year are now commonly
performed at operational weather centers around the
world. Although the accuracy of the forecasts are still
marginal in comparison to statistical methods (Olden-
borgh et al. 2005; Saha et al. 2006) continued efforts to
improve the numerical modeling systems should even-
tually provide dynamical seasonal forecast products as
useful as current dynamical forecasts for short- and me-
dium-range predictions. In addition, unlike statistical
methods, a dynamical forecast model is capable of pro-
viding other valuable data that can be used to under-
stand the evolution of the atmosphere and ocean, and
can thus further improve future seasonal prediction it-
self.

There are currently two kinds of dynamical seasonal
forecasting methodologies. One forces an atmospheric
model with independently predicted sea surface tem-
perature anomalies (SSTAs). Predicted SSTAs are pro-
duced either by purely statistical methods (i.e., per-
sisted anomalies) or by combined statistical and ocean–
atmosphere coupled system forecasts. This method is
called a “two-tier” forecast, and is used widely because
it is easier to implement and simpler to make a reason-
able forecast (see, e.g., Roads et al. 2001; Kanamitsu et
al. 2002a; Straus et al. 2003). The weakness of this
method is that the atmospheric model is forced by the
SST but the ocean is not subsequently affected by the
atmosphere. In the real world, the SST is determined by
the mutual interaction between the ocean and atmo-
sphere, and the two-tier models’ lack of interaction may
result in unphysical behaviors. For example, in regions
where SST anomalies are driven by the atmosphere
(like the central North Pacific and tropical monsoon
regions) there could be huge discrepancies between
simulated and observed direction of the air–sea flux
exchange in the two-tier system. As was shown in Wu et
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al. (2006), the inclusion of coupling increases the skill of
the simulation of the air–sea interaction, which then
leads to a better prediction of monsoon activity

The second method is to use a dynamically coupled
ocean–atmosphere system, the “one-tier” forecast. Ini-
tially a statistical or empirical correction (flux adjust-
ment) was frequently used at the interface between the
ocean and atmospheric models but recent improve-
ments in both atmospheric and ocean models have now
made it possible to avoid such corrections. Some form
of statistical correction may still be needed for the final
model output, but the forecast system itself is free from
statistical corrections and thus the state of the ocean,
including SST, and the atmosphere are dynamically and
physically consistent and not overly artificially con-
strained.

The factors that greatly influence the skill of the sea-
sonal forecast (in addition to the accuracy of the atmo-
spheric and ocean models, and their coupling method)
are the initial conditions. For an atmospheric forecast,
the initial conditions are not crucial for time leads be-
yond about a month, because long-term forecasts are
boundary-forcing problems (e.g., Reichler and Roads
2003). However, certain atmospheric initial conditions,
including those associated with anomalous stratosphere
states, may still be important (Baldwin and Dunkerton
1999; Reichler and Roads 2004, 2005a,b). Oceanic ini-
tial conditions are certainly critical, because the sea-
sonal ocean forecast is an initial value problem. In fact,
in some cases ocean forecasts out to at least a year are
strongly dependent on how accurate the ocean initial
conditions were. In addition, the ocean initial condi-
tions need to be “balanced” with the ocean and atmo-
spheric models, otherwise, the integration goes through
an initial adjustment, which contaminates the initial
ocean condition and makes it difficult to use the fore-
cast during the adjustment period. This adjustment pe-
riod frequently exceeds several months, nearly the en-
tire duration of the seasonal forecast (e.g., Rosati et al.
1997). In this regard, a data assimilation system for the
ocean is critical for a coupled model seasonal forecast;
just like atmospheric data assimilation is essential for
short- and medium-range atmospheric forecasts. There
are additional requirements for land and ocean sea ice
initial conditions, but we will not delve into this further
because our focus here is on ocean–atmosphere inter-
actions.

When we actually perform a real-time coupled fore-
cast, the requirement of accurate ocean initial condi-
tions places severe limits on the choice of ocean model,
because the ocean model needs to have its own data
assimilation, and in addition the ocean analysis system
needs to be running in near–real time. Variational data

assimilation usually involves developing an adjoint of
the ocean model, which requires considerable expertise
and time to develop. The most widely used ocean
model with a data assimilation component is the Geo-
physical Fluid Dynamics Laboratory (GFDL) Modular
Ocean Model (MOM; see Derber and Rosati 1989; Car-
ton et al. 2000). This ocean data assimilation has now
been running in real time at the National Centers for
Environmental Prediction (NCEP; Ji et al. 1995; Ji et al.
1998) for more than 10 yr. MOM is very portable and
easy to adopt, thus, most coupled models developed
and used in the United States utilize the GFDL ocean
model, with a wide variety of atmospheric models
coupled to it. Unfortunately, this current limited ocean
analysis and model choice may severely limit the true
scope of multimodel ensemble coupled model forecasts.
At least the coupled forecast system at the National Aero-
nautics and Space Administration (NASA) Global
Modeling and Assimilation Office (GMAO), devel-
oped by Schopf and Loughe (1995), does provide an
independent ocean model and analysis.

In this paper, we present a new seasonal forecast
system, which utilizes an ocean model developed inde-
pendently from GFDL and NASA GMAO, coupled to
our version of the NCEP seasonal forecast model. The
oceanic component of this forecast system is the Mas-
sachusetts Institute of Technology (MIT) model that
comes with an advanced 4D variational data assimila-
tion system. Though the MIT GCM was primarily de-
veloped for research, ocean assimilation has been run
quasi operationally at the Jet Propulsion Laboratory
(JPL) for the last several years. Cazes-Boezio et al.
(2008) used JPL’s version of the MIT OGCM coupled
to the University of California, Los Angeles (UCLA)
atmospheric GCM (AGCM) to confirm that initializa-
tion of the coupled model with the physically consistent
JPL ocean state assimilated data significantly improves
the skill of the seasonal climate forecasts. We will dem-
onstrate that our new one-tier Experimental Climate
Prediction Center (ECPC; information online at http://
ecpc.ucsd.edu/) Coupled Prediction Model (ECPM),
without flux adjustment, produces skillful seasonal
forecasts, which are comparable to other coupled fore-
cast systems.

One rather important component of the seasonal
forecast, missing in this study, needs to be mentioned
here. A seasonal forecast is itself probabilistic in nature,
particularly the atmospheric part, but also the coupled
ocean component. The natural variability that is essen-
tially noise in the forecast has to be filtered out by
computing ensemble averages. A probability density
function can also be obtained from ensemble forecast-
ing, although its usage is still limited. Unfortunately, we

296 M O N T H L Y W E A T H E R R E V I E W VOLUME 136



did not have sufficient computer resources to perform
large ensemble predictions in this initial study. All
of the forecasts presented here consist of a single-
member deterministic forecast. Therefore, we concen-
trate here on the average error components of the at-
mosphere and ocean on broad scales (e.g., Moore and
Kleeman 1996).

This paper is structured as follows. After first de-
scribing the coupled modeling system in section 2, we
will describe the main mean features of a long, continu-
ous coupled model integration starting with consistent
oceanic and atmospheric conditions in section 3. We
then examine internal variability of the model in sec-
tion 4. Section 5 presents many coupled model retro-
spective forecasts starting at different months and ex-
amines how the skill of the seasonal forecast depends
on the initial conditions and forecast lead time. Section
6 concludes the paper.

2. Models and experiments

ECPM consists of the ECPC version of the NCEP
Global Spectral Model (GSM) and the JPL version of
the MIT ocean model that has been used for ocean
analysis each month beginning in 1993. The coupling is
performed every 24 h. The atmospheric model net heat,
freshwater, and short- and longwave radiation fluxes,
together with wind stresses, are passed to the ocean
component, while the atmosphere is forced with the
SSTs obtained from the oceanic module. No flux ad-
justment is used in the coupled system. A difference
between the ECPC coupling procedure and the one
utilized in the NCEP Climate Forecast System (CFS) is
that the numerical interaction between the atmosphere
and ocean is global, and not confined to climatology at
higher latitudes. The only climatology that is currently
used in the model is the sea ice extent. We are planning
to eventually include the correct description of the in-
ternal ice dynamics that will then allow for more real-
istic heat and freshwater transports and better calcula-
tion of air–sea fluxes at high latitudes. Further details
about the models are provided below.

a. MIT OGCM

The oceanic component of the ECPM is the JPL MIT
model, which has 1° � 1° horizontal resolution with a
telescoping (1⁄3°) resolution near the equator. The
ocean model also has fine vertical resolution with 46
vertical levels. The vertical depth goes down to 5800 m,
with the first 23 levels located in the upper 400 m. The
model is based on the primitive equations on a sphere
under the Boussinesq approximation. There are prog-
nostic equations for horizontal velocity, heat, and salt,
which are integrated forward in time on a staggered

grid. At each time step the internal pressure is calcu-
lated from the hydrostatic relation, and the vertical ve-
locity is diagnosed from the continuity equation. Spatial
coordinates are longitude, latitude, and height. A de-
tailed description of the model is provided in Marshall
et al. (1997a,b). We are using the version of the model
with an implicit free surface. A full surface nonlocal
K-profile parameterization (KPP) of vertical mixing
throughout a water column is also used, and is de-
scribed in detail in Large et al. (1994). The KPP model
of vertical mixing parameterization is based on param-
eters derived from observational data; thus, it captures
important physics during the annual cycle for a wide
range of dynamical regimes and at the same time does
not significantly increase computational time. A con-
vective adjustment is used to remove gravitational in-
stabilities underneath the surface mixed layer.

Finite-volume techniques are employed yielding an
intuitive discretization and support for the treatment of
irregular geometries with orthogonal curvilinear grids.
The algorithm can conveniently exploit massively par-
allel computers and has a domain decomposition, which
allocates vertical columns of ocean to each processing
unit. The model can arbitrarily handle complex geom-
etry and is efficient and scalable. A “pressure correc-
tion” method is used, which is solved as a Poisson equa-
tion for the pressure field with Neumann boundary con-
ditions in a geometry as complicated as that of the
ocean basins. The pressure field is separated into sur-
face, hydrostatic, and nonhydrostatic components. A
preconditioned conjugate-gradient iteration is used to
invert symmetric elliptic operators in both two and
three dimensions. Physically motivated preconditioners
are designed, which are efficient at reducing computa-
tion and minimizing communication between proces-
sors.

The assimilation (Kalman filter with Green’s func-
tion tuned parameters) and forward simulation versions
of the MIT model forced with NCEP reanalysis data
are routinely used at JPL for ocean state assimilation
(Fukumori 2002). To produce a computationally effi-
cient data assimilation, JPL adopted a hierarchal as-
similation system. First, a series of Green’s function are
calculated and used for the correction of robust biases
in the mean state; second, a Kalman filter and smoother
produces near-real-time analysis of the time-dependent
state. The system assimilates observed sea level and
temperature profiles. (Near-real-time analyses are
available at the JPL data server online at http://
ecco.jpl.nasa.gov/external as 10-day averages.)

The ocean analysis has been used in numerous stud-
ies of ocean variability as well as in various geodetic
studies. These studies have demonstrated the accuracy
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of the JPL data assimilation system (e.g., Dickey et al.
2002; Stammer et al. 2002) and its applicability for a
wide range of climate variability studies.

b. GSM

The atmospheric component of the ECPM is the
ECPC version of the NCEP GSM (Kanamitsu et al.
2003). An earlier version of the GSM is being used for
operational seasonal forecasting at NCEP and its per-
formance was documented in Kanamitsu et al. (2003).
(An upgraded version of the model is used as the at-
mospheric component in the current NCEP CFS.) Two-
tier ensemble forecasts of the ECPC GSM are routinely
being provided to the International Research Institute
for Climate and Society (IRI) as part of their multimo-
del seasonal forecast ensemble. Robertson et al. (2004)
showed that the addition of these two-tier ECPC fore-
casts increased the IRI multimodel forecast skill, espe-
cially over Africa.

The GSM utilizes spherical harmonics as the basis
functions and has an efficient transformation to a
Gaussian grid for calculation of nonlinear terms and
physics. Horizontal resolution is T62 (�200 km), but
the number of grid points is reduced in higher latitudes
to save computer time (Juang 2004). There are 28 ver-
tical sigma (Phillips 1959) coordinate levels. The verti-
cal domain is from the earth’s surface (sigma � 1) to
the top of the atmosphere (sigma � 0). This domain is
divided into 28 layers with enhanced resolution near
the bottom and the top of the model. Global and re-
gional versions of the model are also used for experi-
mental subseasonal-to-seasonal climate predictions at
ECPC (see Roads 2004). The main time integration
scheme is the leapfrog scheme for nonlinear advection
terms, and the semi-implicit scheme for gravity waves.
An Asselin (1972) time filter is used to reduce compu-
tational modes.

Atmospheric model dynamics are based on the con-
servation of mass, momentum, energy, and moisture.
To take advantage of the spectral technique in the hori-
zontal, the momentum equation is replaced by the vor-
ticity and divergence equations (Bourke 1974). Thus,
the model is basically described as a set of primitive
equations with vorticity, divergence, logarithm of sur-
face pressure, specific humidity, and virtual tempera-
ture as dependent variables. Scale-selective, second-
order horizontal diffusion (Leith 1971) is applied to
vorticity, divergence, and virtual temperature. The dif-
fusion of temperature is performed on quasi-constant
pressure surfaces (Kanamitsu et al. 1991). Implicit in-
tegration with a special time filter (Kalnay and Kana-
mitsu 1988) is used for vertical diffusion. To incorpo-
rate physical tendencies into the semi-implicit integra-

tion scheme, a special adjustment scheme is performed
(Kanamitsu et al. 1991).

The physics are written in the form of an adjustment
and executed in sequence. The physical processes pa-
rameterizations originated from the NCEP–Depart-
ment of Energy (DOE) reanalysis-2 (R-2; see Kana-
mitsu et al. 2002a,b). These parameterizations include
long- and shortwave radiation (Chou and Suarez 1994;
Chou and Lee 1996) interacting with clouds, which are
diagnosed from relative humidity, convective activity
(Slingo 1987), relaxed Arakawa–Schubert convection
scheme (Moorthi and Suarez 1992), turbulent mixing
and heat and moisture exchanges at the earth’s inter-
faces based on the Monin–Obukhof similarity theory,
nonlocal vertical diffusion scheme in the planetary
boundary layer (Hong and Pan 1996), the Oregon State
University land model (Pan and Mahrt 1987), shallow
convection (Tiedtke 1983), gravity wave drag (Alpert et
al. 1988), and use of smoothed mean orography.

3. Model climatology

As was noted above, the ability of the coupled model
to reproduce climatology and internal variability is a
prerequisite for producing skillful forecasts. An inves-
tigation of the deviation between model and observed
climatology might be used as one of the strategies for
making subsequent improvements. In this section we
document the ECPM climatology and deviation from
observations, and show that the biases are small and the
internal variability is realistic. No artificial flux coupling
has therefore been needed.

a. Atmospheric temperature and winds

Figure 1 shows height–latitude cross sections of the
zonal mean December–February (DJF; top-left panel)
and June–August (JJA; top-right panel) temperature
profiles obtained from the 56 yr of ECPM integration
and the corresponding model’s biases expressed as the
difference between the coupled model climatology and
the 56-yr (1950–2005) R-2 climatology. During the win-
tertime (bottom-left panel), the ECPM produces a cold
bias in the Northern Hemisphere. The warm bias in
high latitudes, especially in the Southern Hemisphere,
accompanies this cold bias. The cold bias in the tropo-
sphere has a pronounced maximum at around 700 hPa
and might be caused by a deficiency in cloud and con-
vection parameterizations. The model’s lower strato-
sphere is colder by around 5 K. These biases are similar
to the ones produced by the stand-alone atmospheric
model in the Atmospheric Model Intercomparison
Project (AMIP)-type integration (e.g., Martin et al.
2006); therefore, they should be explained by the atmo-
spheric behavior, and not by the coupled processes. The
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difference in the temperature distribution during boreal
summer, JJA, is shown in the bottom-right panel and is
qualitatively the same. The warmer near-surface bias
shifts toward the equator in the Northern Hemisphere,
and the tropical midtroposphere cold biases are less
pronounced.

The temperature biases exhibited in the middle and
upper troposphere are somewhat similar to the corre-
sponding biases exhibited by the two versions of the
GFDL Global Coupled Model, GFDL CM2.0 and
GFDL CM2.1 (Delworth et al. 2006). However, the
GFDL CM2.0 and GFDL CM2.1 exhibit pronounced
warm biases in the equatorial and tropical parts of the
lower troposphere. The ECPM produces colder-than-
observed temperatures in the whole bulk of the tropical
troposphere. Overall, the magnitude of the atmospheric

temperature errors is larger than the atmospheric
model run forced by observed SST (Kanamitsu et al.
2002a), reflecting the systematic error in the simulation
of SST.

Figure 2 exhibits the systematic error in the simula-
tion of the climatological SST. In comparison to the
NCEP optimum interpolation (OI) SST averaged from
1950 to 2005, the ECPM produced an SST 0.5–1 K
colder over most of the Tropics. On the other hand, the
ECPM produces a warmer SST over the northern
oceans, especially over the western and central North
Pacific during the summertime. The central Pacific
equatorial cold bias is also produced by a number of
coupled models including the University of California,
Los Angeles global atmospheric model coupled to the
GFDL oceanic model (Robertson et al. 1995), the

FIG. 1. Height–latitude cross sections during the boreal (left) winter and (right) summer of the zonal mean temperature profiles
obtained from a long integration of (top) the ECPM. (bottom) The differences between the coupled model simulation and the
corresponding R-2 data. The contour interval is 10 K for the full fields and 1 K for the differences. The boldface contour in the
difference maps shows the zero values.
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GFDL CM2.0 and CM2.1 (Delworth et al. 2006), the
Florida State University (FSU) climate model (Shin et
al. 2005), and the Hadley Centre Global Environmental
Model version 1 (HadGEM1; Johns et al. 2006).

The systematic errors in the precipitation field are
shown in Fig. 3. The Climate Prediction Center (CFC)
Merged Analysis of Precipitation (CMAP) for 1979–
2004 was used for the observational data. The differ-
ences between the ECPM and CMAP are shown in the
second row from the top. The corresponding differ-
ences between R-2 (1950–2005) and CMAP precipita-
tion are shown in the bottom row. The ECPM winter-
time intertropical convergence zone (ITCZ), shown in
the top left panel in Fig. 3, reveals two zonal bands of
maximum precipitation (the so-called double-ITCZ
feature) mainly in the tropical western Pacific. ECPM
extends the wintertime double-ITCZ feature into the
central Pacific as marked by excessive precipitation
around 5°N in the central tropical Pacific (second down
from the top-left panel in Fig. 3). However, as opposed

to a number of coupled model climatologies, the
double-ITCZ feature is not extended all the way into
the eastern Pacific. During the summertime (right col-
umn in Fig. 3), the model underestimates the western
equatorial Pacific precipitation (second down from the
top-right panel), and thus separates the nearly uniform
band of maximum precipitation, thus creating the
double-ITCZ feature in the western Pacific. Compari-
son with the precipitation from R-2 (third row from the
top) indicates that the coupled model produces more
realistic wintertime climatology over the northern
oceans than the R-2. This is especially evident over the
Kuroshio–Oyashio Extension (KOE) region (second
down from the top-left and bottom-left panels), where
the R-2 DJF precipitation pattern reveals an excessive
amount of precipitation. This bias is reduced in the
coupled model. It should be noted that the double-
ITCZ feature is present in almost all of the current
coupled models (e.g., Delworth et al 2006; Johns et al.
2006). As was noted in Johns et al. (2006), this phe-

FIG. 2. Boreal (left) winter and (right) summer SST obtained from a long integration of (top) the ECPM. (bottom) The difference
between ECPM simulation and corresponding NCEP OI SST data. The contour interval is 5 K for the full fields and 0.5 K for the
differences. Negative values are shaded.
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FIG. 3. (left) DJF and (right) JJA precipitation obtained from (top) 56-yr-long ECPM integration. Difference between (second from
top) ECPM and CMAP climatology and (third from top) R-2 precipitation climatology. (bottom) Difference between R-2 and CMAP
climatology. The contour interval is 1 mm day�1. Negative values are shaded.
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nomenon may be linked to the equatorial cold bias ex-
hibited by many coupled models. The precipitation bi-
ases in the ECPM are comparable to the corresponding
biases in the GFDL CM2.0 and CM2.1 (e.g., Fig. 17 in
Delworth et al. 2006).

The corresponding ECPM zonally averaged zonal
winds (not shown here) exhibit biases comparable with
the corresponding biases both in the GFDL Global At-
mosphere and Land Model (AM2-LM2) AMIP-type
simulation (GFDL Global Atmospheric Model Devel-
opment Team 2004) and in the GFDL CM2.0/CM2.1
coupled (Delworth et al. 2006) integrations. The largest
discrepancies from the observations (around 10–15
m s�1) occur in the lower stratosphere. These biases are
associated with the cold biases in the zonal mean tem-
perature in accordance with the thermal wind equation.
In the troposphere, the differences are much smaller.

The error in the Northern Hemisphere zonal wind
extends to the surface and is accompanied by a dipole
pattern in the sea level pressure bias pattern that con-
sists of an increased surface cyclonic activities in high
latitudes, and increased anticyclonic activities in mid-
latitudes.

The model produces a stationary planetary wave pat-
tern (depicting departures from the zonal mean 500-mb
geopotential height field during boreal winter, not
shown here) that is similar to the ones obtained from
R-2 and simulated by the GFDL CM2.0 and CM2.1
(i.e., Fig. 23 of Delworth et al. 2006). Similar to the
GFDL CM2.0 and CM2.1, the ECPM produces weaker
troughs over the North Pacific and northeastern parts
of North America, and a weaker ridge over the west
coast of the United States during boreal winter.

Summarizing, both winter- and summertime ECPM
circulations exhibit systematic biases in comparison to
R-2 and observations. However, these biases are com-
parable with the biases produced by other climate mod-
els (Anderson et al. 2004; Saha et al. 2006; Delworth et
al. 2006).

b. Ocean climatology

One of the most important variables indicating the
potential influence of the ocean on the atmosphere is
the integrated heat content from the surface to 400-m
depth (e.g., McPhaden 2004) because it can be consid-
ered to be a predictor of ENSO development. There-
fore, the difference between the model and observed
oceanic heat content climatology is an indicator of how
good the ocean simulation is. Figure 4 exhibits the an-
nual mean 400-m heat content obtained from the
coupled integration (top panel). Difference between
the JPL 1993–2005 assimilated data and the climatology

from the ECPM long run is shown in the bottom panel.
The maximum absolute difference between the coupled
model run and the assimilated data in the Tropics is less
than 1.5 � 109 J m�2, which is around 10% of the
seasonal mean value. The most pronounced differences
are seen over the eastern part of the equatorial Pacific
and at around 10°N in the western Pacific. This is a
typical bias pattern for coupled model simulations, and
is associated with the ITCZ location. ECPM exhibits a
positive bias over the KOE region in the western North
Pacific. Again, errors of the same size and sign are typi-
cal of other coupled models (e.g., Megann 2005). The
possible causes of these errors will be discussed later in
section 4c.

A depth–longitude temperature cross section along
the equator is shown in Fig. 5. Again, as for the 400-m
heat content, the top panel shows ECPM annual mean
simulated data, and the bottom panel shows the differ-
ence between the JPL analysis and the climatology of
the coupled model. The greatest difference can be seen
in the western Pacific in the barrier layer below the
thermocline. In the eastern Pacific, the model tends to
produce a deeper thermocline. It should be mentioned
that the absolute values of the discrepancies between
the model and assimilated data are small in comparison
to the climatology (less than 5% of the absolute values).
These biases are qualitatively similar to the ones pro-
duced by the GFDL CM2.0 and CM2.1 (Wittenberg et
al. 2006) and to the biases produced by Green’s func-
tion estimate of ocean temperature data (Menemenlis
et al. 2005).

To summarize, the ECPM climatology exhibits biases
in comparison to observations. However, the ampli-
tudes of these biases are much smaller than the mean
values, and the discrepancies are comparable or smaller
than the systematic errors produced by most coupled
models used for climate prediction (e.g., Saha et al.
2006; Gordon et al. 2000).

4. Internal variability

In the previous section we documented the mean
model state and the deviations from observations.
Though correcting these systematic errors could per-
haps be made by attempting to tune the model, a more
important question is the extent to which the model can
reproduce local observed variability as well as the re-
mote atmospheric response of various variables. In that
regard, the tropical El Niño–Southern Oscillation
(ENSO) signal is the most important global signal ob-
served in climate variables. We therefore first checked
the ability of the model to produce realistic SST vari-
ability in the tropical region.
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a. Seasonal cycle in the tropical Pacific

Li and Philander (1996) demonstrated the impor-
tance of correct simulations of the annual cycle in the
tropical Pacific and its connection to the mean state.
Therefore, the ECPM’s ability to correctly simulate an-
nual variability and phase locking will be studied in this
section.

The model’s SST annual cycle (Fig. 6, bottom-left
panel) exhibits a semiannual cycle in the western equa-
torial Pacific, and a westward-propagating annual sig-
nal in the eastern Pacific. This annual variability is very
close to both the Hadley Centre Sea Ice and SST

dataset shown in Jungclaus et al. (2006) and the NCEP
OI SSTs shown in Wittenberg et al. (2006). The ECPM
outperforms the coupled model that consists of the Max
Planck Institute for Meteorology (MPI-M), version 5,
atmospheric model (ECHAM5) and the Max Planck
Institute Ocean Model (MPI-OM) (ECHAM5/MPI-
OM) in reproducing the phase and strength of the
equatorial Pacific SSTs. However, similar to the GFDL
CM2.0 and CM2.1, the ECPM produces a stronger-
than-observed annual cycle (see Wittenberg et al. 2006,
their Fig. 11a). The corresponding annual mean pattern
(Fig. 6, top-left panel) is quantitatively in close agree-
ment with observations. There are both a pronounced

FIG. 4. (top) Annual mean 400-m heat content simulated by ECPM. (bottom) The differ-
ence between JPL MIT assimilated 1993–2005 data and the ECPM 56-yr integration. The
contour interval 2 J m�2 for the full fields and 0.5 J m�2 for the differences. The boldface
contour in the difference maps shows the zero values. Negative values are shaded.
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warm pool and a cold tongue, although the ECPM pro-
duces a cold bias over the cold tongue region.

The top-right panel in Fig. 6 shows the annual mean
zonal wind stress. The wind stress pattern is similar to
the 40-yr European Centre for Medium-Range
Weather Forecasts (ECMWF) Re-Analysis (ERA-40)
data (see Wittenberg et al. 2006). The annual mean
pattern exhibits easterlies maxima at around 20°N and
150°W–180°, and weak westerlies at the equatorial
western and eastern boundaries. The bottom-right
panel shows the annual cycle of the zonal wind stress
averaged over 2°S–2°N. The model captures the west-
ward propagation of the east Pacific signal, as well as
the observed relaxation of the trade winds during the
spring time. The model correctly reproduces the sum-
mertime direction of the wind stress in the eastern Pa-
cific. The model also exhibits realistic seasonality in the
interannual variability of ENSO measures by the inter-
annual variance of the Niño-3.4 index (not shown here).

The simulated interannual variance peaks during late
autumn and winter, similar to observations.

Another very important phase lock feature is exhib-
ited in the annual cycle of the correlation between
Niño-3 SST anomalies and the Indian Ocean dipole
(IOD). Figure 7 shows the correlation between differ-
ent indices associated with IOD and the Niño-3.4 index.
The IOD index is based on the difference in SST be-
tween the west (10°S–10°N, 50°–70°E) and southeast
(5°S–0°, 90°–110°E) tropical Indian Ocean. The ENSO
signal propagates (via the atmosphere) into the Indian
Ocean and results in the substantial correlation be-
tween Niño-3.4 and the western node of the Indian
dipole. The amplitudes and phases of the correlations
between the IOD and Niño-3.4 are very similar to
observations (e.g., see Fig. 19 in Johns et al. 2006).
In contrast to some other coupled models (e.g.,
HADGEM1), the ECPM produces a more realistic
phase lock between the IOD and Niño-3.4.

b. Interannual variability

As was noted in a vast number of studies (e.g., Del-
worth et al. 2006) the standard deviation of the annual-
mean SST can be considered to be one of the robust
measures of the model internal variability. Figure 8
shows the ECPM and NCEP OI SST interannual stan-
dard deviation. The model SSTs include 56 yr of simu-
lations. The NCEP OI SSTs were taken for the period
of 1950–2005. The linear trend was removed from both
datasets. The model variability pattern is similar to the
observation in the eastern and central tropical Pacific,
as well as over the midlatitude Pacific. As in the case
with some other coupled models (e.g., GFDL CM2.0
and CM2.1; Delworth et al. 2006), ECPM exaggerates
SST variability, especially in the Tropics and over the
Oyashio Extension region.

To further document the interannual variability in
the model, a spectral analysis of the 56 yr of the simu-
lated wintertime SST anomalies averaged over Niño-
3.4 region (5°N–5°S, 170°–120°W; Fig. 9) was compared
with the spectra of the wintertime NCEP OI SST
(Reynolds and Smith 1994) from 1950 to 2005. It should
be noted that the spectral analysis was performed on a
wintertime data because of the pronounced phase lock
discussed in the previous section. The ECPM spectra
exhibits statistically significant maxima peaks in the
2–6-yr period interval, which are comparable to analo-
gous peaks obtained from observed NCEP OI SSTs.
These peaks correspond to quasi-periodic ENSO
events.

Figure 10 shows wintertime SSTAs averaged over the
Niño-3.4 region. ECPM exhibits a slightly stronger am-
plitude of variability. This difference is further con-

FIG. 5. (top) ECPM annual mean height–latitude cross section
of the ocean temperature field averaged from 5°N to 5°S. (bot-
tom) The difference between JPL MIT assimilated 1993–2005
data and the ECPM 56-yr integration. The contour interval is 2 K
for the full field and 0.2 K for the differences. Negative values are
shaded.
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firmed by a comparison between the simulated (bot-
tom-left panel, Fig. 10) and observed (bottom-right
panel, Fig. 10) frequency distributions of the Niño-3.4
SST anomalies. The probability of the simulated El
Niño events is slightly greater than the probability of La
Niña events, the amplitude of the warm extreme events
in the model is also slightly larger than of the cold
events. This is opposite to the simulations by HadGEM1
(Johns et al. 2006) that produces weaker-than-observed
variability for the positive-phase SST anomalies.

c. ENSO evolution

The evolution of ENSO can be expressed by con-
structing the maps of the equatorial SST, wind stress,
upper-ocean current, and temperature lag regressed
onto the Niño-3 index (SST anomalies averaged over
5°S–5°N and 150°–90°W). Figure 11 shows the ECPM
lag regressions onto the Niño-3 index normalized by

one standard deviation. Positive time corresponds to
Niño-3 leading the variable. All the fields were aver-
aged over 2°N–2°S. SST anomalies are zonally uniform
and nearly steady from 80°W to 130°E. The SST
anomalies peak approximately 12 months after they
start to develop in the western Pacific. The SST anoma-
lies over the westernmost Pacific are negative at the
time of the nearly basinwide peak. These cold anoma-
lies propagate eastward reaching the equatorial part of
the American coast in about 12 months. This behavior
is very similar to the ob served anomalies of the Ex-
tended Reconstructed SST, version 2 (ER.v2), pre-
sented by Wittenberg et al. (2006, their Fig. 23).

The equatorial zonal wind stress anomalies propa-
gate eastward. However, in comparison to the ERA-40
zonal wind stress anomalies (see Wittenberg et al.
2006), there is a steady westerly anomaly pattern over
the western part of the equatorial Pacific, up to around

FIG. 6. (top left) ECPM annual mean SSTs in the Tropics. The contour interval is 1 K. (top right) ECPM annual mean zonal wind
stress (�102) in the Tropics. The contour interval is 2 N m�2. (bottom left) Annual cycle along the equator (2°N–2°S) of the deviations
from the annual mean ECPM SSTs. The contour interval is 0.5 K. (bottom right) The deviations from the annual mean ECPM zonal
wind stress (�102). The contour interval 1 N m�2. Negative values are shaded.
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130°E. This steady pattern is produced by the GFDL
CM2.0 and CM2.1 as well and is due to the lack of
stochastic noise in the atmospheric forcing (B. Kirtman
2006, personal communications). As in the observa-
tions, the peak in the wind stress anomalies over the
central Pacific is preceded by westerlies over the west-
ern Pacific nearly 12 months before the peak. The peak
occurs over the central Pacific a couple months before
the peak in SSTAs. In the ECPM, the easterlies reap-
pear in the west and central Pacific in 9 months, which
is different from the observations that show eastward
propagation of easterlies. It should be noted, that the

GFDL CM2.0 and CM2.1 do not correctly reproduce
this propagation as well.

As in the GFDL Applied Research Center ocean
analysis (Wittenberg at al. 2006), ECPM reproduces the
eastward propagation of the upper-ocean heat content
that peaks at the time of the SSTAs peak. However,
there is a difference in the propagation of the cold up-
per-ocean temperature anomalies from the western Pa-
cific. As is the case with the wind stress anomalies, the
cold ocean anomalies reappear in the central and east-
ern Pacific, instead of propagating eastward.

The upper-ocean eastward zonal currents peak in the
easternmost Pacific 3–12 months before the SSTAs
peak. The western currents then start to develop
around the ENSO peak. The pattern of westward cur-
rents encompasses nearly the whole basin and is cen-
tered over the central Pacific. These currents reach
maxima 6–9 months after the SSTAs peak. This devel-
opment is similar to the evolution of GFDL CM2.0/
CM2.1 currents (e.g., Wittenberg et al. 2006). Because
the zonal current advection of the SST gradient is cru-
cial in transition from El to La Niño, the qualitative
similarity between ECPM simulations of the ocean cur-
rents and observations is crucial for correct ENSO
simulations.

To summarize, the ECPM simulation of the ENSO
mechanism is qualitatively similar to the observations.
The differences are not worse than the ones produced
by other (e.g., GFDL CM2.0/CM2.1) coupled models.
We are planning to eventually perform more detailed
studies on the cause of these discrepancies.

d. ENSO teleconnection patterns

As was noted in the variety of studies, the climate
system has a global response to the ENSO forcing.

FIG. 8. Standard deviation of the annual-mean SST (K) from (left) ECPM 56 yr of simulations and (right) NCEP OI SST for the
period of 1950–2005. The contour interval is 0.2 K.

FIG. 7. Annual cycle of the correlation between 1) the IOD
index [based on the difference in SST between the west (10°S–
10°N, 50°–70°E) and southeast (5°S–0°, 90°–110°E) tropical In-
dian Ocean] and Niño-3.4 index (solid line); 2) the western node of
the IOD and the Niño-3.4 index (dotted line); 3) the southeast node
of the IOD and the Niño-3.4 index (dashed–dotted line); and 4) the
west and southeast nodes of IOD (dashed line).
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These teleconnection patterns have been extensively
studied and documented (e.g., Wallace and Gutzler
1981; Sardeshmukh et al. 2000). The spatial pattern of
the SST response is shown in Fig. 12. The correlation
map between the Niño-3.4 index and SSTAs over the
Pacific produced by the ECPM is qualitatively similar
to the observed NCEP OI SST map. The meridional
structure and strength simulated by the model over the
Pacific are in good agreement with observations. The
weaker signals over the Indian and Atlantic Oceans are
also similar to the observations.

We also studied the skill of ECPM to produce an
ENSO-related remote atmospheric response by re-
gressing 500-hPa height (Z500) anomalies onto the
Niño-3.4 index. The response in Z500 to one standard
deviation of the ENSO signal in the ECPM (not shown
here) over midlatitudes bears similarities with the
analogous response in R-2 data, indicating that our
coupled model reproduces, reasonably well, the atmo-
spheric Tropics–midlatitude bridge.

Another test of the skill of a coupled model is its
ability to correctly simulate the relationship between
SST and heat flux anomalies, especially over the North
Pacific, and in the tropical monsoon regions, where the
atmosphere significantly alters SST variability. We in-
vestigated the local correlation between SST anomalies
and latent heat fluxes. Figure 13 compares the correla-
tion between SST and latent heat anomalies for ECPM
(top panel) and for the AMIP run with the same atmo-
spheric component. This figure can be compared with

the Center for Ocean–Land–Atmosphere (COLA)
coupled and stand-alone models (Fig. 7 from Wu et al.
2006). As opposed to the stand-alone atmospheric in-
tegration, both the ECPCM and coupled COLA model
produce negative correlations in the tropical Pacific and
equatorial Indian Oceans, indicating that SST anoma-
lies in these regions are forced by the atmosphere. Al-
though the correlations over the western part of the
Pacific warm pool in the coupled model are negative,
the region of positive correlations still extends too
much to the west in comparison to observations [see
map of pointwise correlations derived from the God-
dard Satellite-based Surface Turbulent Fluxes, version
2, latent heat flux anomalies and observed SST anoma-
lies shown in Fig. 6 from Wu et al. (2006)]. Similar
errors occur in the UCLA coupled atmosphere–ocean
general circulation model (Yu and Mechoso 1999).
However, in comparison to the uncoupled run, the in-
troduction of the coupling improves the skill of the heat
flux simulation over the equatorial Indian Ocean and
western tropical Pacific, two regions that are crucial for
monsoon development (Wu et al. 2006).

The skill of ECPM in producing the monsoon–ENSO
relationship is shown in Fig. 14. The figure shows the
correlation between June–September precipitation av-
eraged over India (5°–25°N, 60°–100°E) and SSTAs
during the next winter season (DJF). As was shown in
Kirtman and Shukla (2002), the uncoupled AGCMs do
not correctly simulate this relationship. Figure 14 shows
lots of similarities between simulated by ECPM (top

FIG. 9. Spectral analysis of the wintertime Niño-3.4 (5°N–5°S,
170°–120°W) ECPM SSTAs obtained from the 56-yr integration
(solid line) and NCEP–DOE OI SSTAs for 1950–2005 period
(dash–dotted line). The corresponding red noise spectra (dashed
line for ECPM and dotted line for OI SST) indicate the signifi-
cance of the power peaks.

FIG. 10. (top) Wintertime SSTAs averaged over the Niño-3.4
region simulated by ECPM (solid line) and NCEP OI SST
(dashed line). (bottom) The frequency distribution of the Niño-
3.4 SSTAs in (left) ECPM and (right) NCEP OI SST data. A total
of 56 yr of ECPM simulations were used. NCEP OI SST data are
for the 1950–2005 time period.
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panel) and observed (bottom panel) correlation maps.
The observed correlation map was derived from the
Climate Anomaly Monitoring System (CAMS) precipi-
tation data and NCEP OI SSTs. The coupled model
correctly captures broad tropical Pacific and Indian
Ocean negative correlation patterns. This result is com-
parable with the correlation pattern produced by the
COLA ACGCM (Kirtman and Shukla 2002). There-
fore, it is safe to say that our coupled model has good
skill in simulating the Indian monsoon–ENSO relation-
ship.

Because of the lack of disk storage, we did not save
daily data for this initial run; thus, we are not able to

analyze the skill of simulating higher-frequency MJO
and storm tracks. However, in the future, we do plan to
analyze higher-frequency processes in the coupled
model.

5. Skill of the retrospective forecast

We performed ECPM retrospective forecasts for dif-
ferent months. The initial oceanic conditions were ob-
tained directly from the JPL 1994–2005 ocean analysis.
Because we use the same ocean model configuration as
the JPL analysis, our model forecast starts smoothly
from the ocean analysis, without any noticeable initial

FIG. 12. Correlation (�10) between Niño-3.4 SST anomalies and global SST anomalies: (left) 56 yr of ECPM integration; (right)
NCEP OI SST anomalies during 1950–2005. The contour interval is 2. Shading indicates correlations greater than 95% significance
level.

FIG. 11. ECPM lag regression maps obtained by regressing onto the normalized Niño-3 index. (from left to right) SST (K K�1), zonal
wind stress anomalies (N m�2 K�1), upper-ocean temperature averaged over the upper 250 m (K K�1), upper-ocean zonal current
averaged over the upper 50 m (m s�1 K�1). All fields are averaged over 2°S–2°N. The time goes from �18 months to �18 months.
Positive time means that the Niño-3 index is leading. Negative values are shaded.
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shocks. We have now performed 1-yr predictions start-
ing at the beginning of each month from 1994 to the
present. The climatology derived from these retrospec-
tive forecasts is used to obtain the anomalies for the
real-time forecast. The skill of the Niño-3.4 predictions,
measured by the correlation between the simulated
SST Niño-3.4 anomalies and the observation (Fig. 15),
demonstrates that the skill of the forecasts initiated in
winter usually drops by the fourth month (spring bar-
rier), but then picks up again and stays high for up to 12
months after the coupled model dynamics starts to in-
fluence the predictability. The skill of the forecasts
started in summer is very high for up to 9 months of
lead time. The correlation values smaller than 0.52
(95% confidence level for 12 degrees of freedom) are

masked. The ECPM skill seasonal dependency is simi-
lar to the one obtained from the NCEP CFS (Saha et al.
2006). Analogous skill (not shown here) for the North
Pacific–North American 500-hPa height also indicates a
drop in prediction skill by the sixth month of integra-
tion.

Based on this initial ensemble of predictions, we have
now started to produce near-real-time experimental
seasonal forecasts (see online at http://ecpc.ucsd.edu/
COUPLED/CM/coupled.html). Figure 16 demon-
strates the relationship between the ECPM SST
anomalies forecast and predictions by the dynamical
models used for IRI SST anomalies forecasts in the
Niño-3.4 region for 2004–05 forecasts started at the be-
ginning of each month from May to December. The

FIG. 13. Correlation (�10) between SST and latent heat anomalies from (top) ECPM and
(bottom) AMIP GSM integration data. The contour interval is 2. Shading indicates correla-
tions greater than 95% significance level.
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scatterplot includes the forecasts from the following
models: NASA’s Seasonal-to-Interannual Prediction
Project (NSIPP) model, the NCEP CFS, Japan Meteo-
rological Agency’s model, Scripps Institution’s hybrid
coupled ocean–atmosphere model, the Lamont-
Doherty model, the Predictive Ocean Atmosphere
Model for Australia (POAMA), the ECMWF model,
the Met Office model, the Seoul National University
(Korea) model, Zhang’s intermediate coupled model,
the ECHAM/MOM, and the COLA Anomaly model.
(The data were obtained from http://iri.columbia.edu/
climate/ENSO/currentinfo/archive/index.html.) The di-
agonal line indicates a perfect prediction. The closer
the point to the line, the better the prediction. The IRI

models exhibit large scatter in the fourth quadrant,
meaning that there is a large error in negative Niño-3.4
SST anomalies prediction. The ECPM has smaller er-
rors in the fourth quadrant, as well as smaller scatter
around the red line. Again, it should be noted that our
forecast skill evaluation is preliminary because it is
based on a smaller number of realizations than larger
ensemble predictions from the other models.

The skill of 4–6-months lead prediction of DJF (from
initial conditions centered at 1 August) near-surface
variables (precipitation and 2-m temperature), mea-
sured by correlation between observed and predicted
anomalies, is shown in Fig. 17. The correlation coeffi-
cients greater than the 95% statistical significance level

FIG. 14. Correlation (�10) between Indian summer (June–September) monsoon rainfall
and the subsequent winter season DJF SSTAs: (top) ECPM; (bottom) CAMS precipitation
and NCEP OI SSTs contour interval 2. Shading indicates correlations greater than 95%
significance level.
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cutoff are shaded. ECPM has some skill in predicting
2-m temperature (T2m) over the northwestern parts of
the United States and part of the west coast of Canada
and Alaska. The model has a good skill in predicting
precipitation over the northeastern part of the United

States and Alaska. For these regions, the model skill is
similar to the skill of the FSU climate model coupled to
the NCAR Community Land Model, version 2, as dis-
cussed in Shin et al. (2005).

Figure 18 shows the skill of the model in 4–6-months
lead prediction of the oceanic 400-m heat content and
temperature along the equator. The top panel shows
the correlation between DJF 1994–2005 anomalies pre-
dicted from the ECPM integrations started at the be-
ginning of August and the corresponding anomalies
from the JPL analysis of the DJF 400-m heat content.
Though the correlations are very high over the tropical
Pacific Ocean, the ECPM skill is poor over the tropical
Indian Ocean.

The corresponding skill in predicting equatorial tem-
perature in the Pacific Ocean is shown in the bottom
panel in Fig. 18. The depth–longitude cross section of
the correlation between ECPM and the JPL equatorial
DJF temperature anomalies exhibits high skill in pre-
dicting oceanic temperatures over this region.

6. Summary and further work

We summarize the description and skill of some
prominent coupled models currently being used for sea-
sonal climate predictions in Table 1. The skill is mea-

FIG. 16. Scatterplot of Niño-3.4 SST anomalies predictions (2004–05) started at the begin-
ning of each month from May to December vs NCEP/DOE OI SSTAs. The diagonal line
indicates perfect prediction, the closer the point to the line, the better the prediction. The IRI
models exhibit large scatter in the fourth quadrant, meaning that there is a large error for
negative Niño-3.4 SST anomaly predictions. ECPM has smaller errors in the fourth quadrant,
as well as smaller scatter about the red line.

FIG. 15. The skill of the Niño-3.4 predictions measured by the
correlation between ECPM and NCEP/DOE OI Niño-3.4 SST
anomalies. Correlation coefficients that are less than 95% signifi-
cance level cutoff are masked.
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sured by correlation coefficients (for the period of
1994–2005) between predicted wintertime DJF anoma-
lies (4–6-months lead forecasts initialized in August)
and observed DJF anomalies. The correlation coeffi-
cients were averaged over the western United States for
2-m temperature and the southeastern United States
for precipitation (regions with the correlations greater
than 0.5 on the maps in Fig. 17). Data for the Devel-
opment of a European Multimodel Ensemble System
for Seasonal-to-Interannual Prediction (DEMETER)
models was obtained from the DEMETER Web site.
Only one ensemble member was used for these calcu-
lations. Compared with other models, ECPM exhibits
relatively good skill in predicting precipitation and T2m

over the selected U.S. areas. Again, the main drawback
is that we have not yet had the resources to perform
many additional ensemble forecasts and because of the
availability of JPL assimilation ocean analysis, the fore-
casts are based only on the 1994–2005 period. However,
these preliminary results are promising and provide an
indication of the potential of the ECPM. In the future
we will compare ECPM with the 11 coupled models
that were assessed by Lawrence Livermore National
Laboratory’s Program for Climate Model Diagnosis
and Intercomparison (Philips et al. 2006).

The main reasons why ECPM should now be in-
cluded into the mix of similar coupled models including
the one developed at NCEP are as follows:

FIG. 17. Skill of the 4–6-months lead DJF prediction of near-surface variables: precipitation
and T2m from forecasts started at the beginning of August for the 1994–2005 time period.
Correlations coefficients that are greater than 95% significance level cutoff are shaded.
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• Both ECPC atmospheric and ocean models are very
nearly identical to the ones used for data assimilation,
thus, initial conditions for both the atmosphere and
ocean are consistent and initial spinup is small. This is
also true for NCEP CFS, NASA NSIPP, COLA, and
other systems that perform ocean data assimilation.

• The assimilation version of the JPL MIT OM is used

routinely to produce a 4D ocean state assimilation.
The consortium for Estimating the Circulation and
Climate of the Ocean has already demonstrated the
feasibility and utility of providing global, sustained,
dynamically sensible estimates for the full three-
dimensional, time-varying oceanic state and associ-
ated surface forcing fields required to bring the

FIG. 18. (top) The correlation (�10) between DJF 1994–2005 anomalies predicted from the ECPM integrations
started in August and the corresponding anomalies from the JPL analysis of the DJF 400-m heat content. The
contour interval is 1. (bottom) Same as (top), but for the depth–longitude cross section of the correlation between
ECPM and JPL equatorial DJF temperature anomalies. The contour interval is 1. Correlation coefficients that are
less than the 95% significance level cutoff are masked.

JANUARY 2008 Y U L A E V A E T A L . 313



model into consistency with ocean observations. The
use of the 4D variational ocean assimilation system to
minimize the initial drift of the ocean model may be
an improvement upon the older GFDL assimilation
system in use at NCEP.

• The ocean model component is different from that in
other coupled models. Different ocean models and
assimilation systems are needed to span the natural
uncertainty associated with ocean initial conditions
and forecasts.

• These global coupled model simulations and fore-
casts are beginning to be used as boundary conditions
for regional coupled model simulations and forecasts.
In particular, we are beginning to develop a corre-
sponding regional coupled atmosphere–ocean model
that can be used in coastal regions (Seo et al. 2007).

To develop the coupled ocean–atmosphere–land
model for long lead climate prediction (multiseasons),
we are now planning to further assess the skill of the
coupled model retrospective forecasts and compare this
skill with the two-tiered prediction model. As was
shown, the skill of the forecasts depends on the start
date and targeted season, and thus should be similar to
the skill found in other coupled models. To get more
statistically robust results, especially for individual pre-
dictions, we intend to perform 10-member ensemble
predictions for each month of the recent 14-yr period
(the JPL ocean state analysis is updated monthly and is
available from 1993 to the present). A single initial con-
dition will be used for the ocean initial condition be-
cause only single oceanic initial conditions are available
each month. However, the multiple initial conditions
for the atmosphere ensemble will be extracted from
R-2 from every 12-h initial state nearest to the begin-
ning of each month.

We will also study the idealized predictability of the
coupled model. For this purpose, we intend to perform
a long (100 yr) 10-member ensemble coupled model
simulation without any flux correction. We will use this
coupled long simulation as a proxy for an observed
state, and perform two-tier and additional coupled runs
with perturbed initial conditions of the ocean and at-
mosphere. We will then compare the statistics from
these runs with the original long coupled integration as
well as with the actual forecast experiments. This effort
could provide a possible upper boundary to coupled
predictability, which may then be useful for helping us
to better understand the ultimate capability of our
coupled model.
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